

Interleukin 37 Levels in Relation to Serum Vitamin D Levels Among Ain Shams University Medical Students

Thesis

Submitted for Partial Fulfilment of Master Degree in Clinical Pathology

ByFouad Mohamed Fouad zaki M.B.B.Ch

Under supervision of

Prof. Dr. Randa Reda Mabrouk

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Prof. Dr. Afaf Abdelalim Mostafa

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Dina Aly Mohamed Aly Ragab

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Randa Reda Mabrouk**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Afaf Abdelalim Mostafa**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Dina Aly Mohamed Aly Ragab**, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

List of Contents

Title	Page Number
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Vitamin D	4
Sources of Vitamin D	4
• Vitamin D Metabolism	7
• Mechanism of Action of vitamin D	9
Serum Levels of Vitamin D	10
• Factors Affecting Vitamin D levels	11
• Functions of Vitamin D	13
Interleukin-37	25
• Discovery of IL-37	26
• Interleukin-37 gene	26
• Structure of IL-37	27
• Expression and regulation of IL-37	29
Mechanism of action and functions of IL-	3730
• IL-37 expression in human diseases	33

Subjects and Methods	37
Results	44
Discussion	59
Summary	
Conclusion	
Recommendations	70
References	
الملخص العربي	

List of Tables

Table No.	Title	Page Number
Table (1):	Expression and clinical signification human disorders	
Table (2):	Demographic data of patients	44
Table (3):	Comparison between group regarding serum vitamin D level BMI	s, Il-37 levels and
Table (4):	Comparison between the two su serum Il-37 levels and hsCRP lev	
Table (5):	Correlation between serum vita serum IL-37 levels	
Table (6):	Correlation between BMI and levels and IL-37 levels	
Table (7):	Correlation between BFM and levels and IL-37 levels	
Table (8):	Correlation between PBF and levels and IL-37 levels	
Table (9):	Correlation between hsCRP and levels and IL-37 levels	

List of Figures

Fig. No.	Title Page No.	
Figure (1):	Photobiogenesis of vitamin D	5
Figure(2):	Activation of vitamin D	
Figure (3):	Vitamin D metabolism	
Figure (4):	Interaction between vitamin D and its receptor 10)
Figure (5):	Role of vitamin D in bone synthesis and resorption 15	5
Figure (6):	Action of Vitamin D in the immune system 18	3
Figure (7):	Cathelicidin induction via TLRs and vitamin D21	1
Figure (8):	An overview of the anti-inflammatory and immunomodulatory effects exerted by the active metabolite of vitamin D 1,25(OH)2D3 (referred to as calcitriol) on innate and adaptive immune system	4
Figure (9):	Variants of IL-3728	3
Figure (10):	IL-37 binding and signal transduction	1
Figure (11):	Possible biological functions of IL- 37	3
Figure (12):	Comparison between both studied groups regarding age45	5
Figure (13):	Comparison between both studied groups regarding gender distribution	5
Figure (14):	Comparison between both studied groups regarding serum vitamin D levels	7
Figure (15):	Comparison between both studied groups regarding serum IL-37 levels	7
Figure (16):	Comparison between both studied groups regarding BMI	3
Figure (17):	Comparison between both studied groups regarding BFM	
Figure (18):	Comparison between both studied groups regarding PBF	

Fig. No.	Title	Page No.	
Figure (19):	Comparison between both regarding hsCRP levels grodivided into two subgroups	oup I was further	9
Figure (20):	Correlation between vitamin levels		1
Figure (21):	Correlation between BMI and	vitamin D levels 5	2
Figure (22):	Correlation between BMI and	IL-37 levels5	3
Figure (23):	Correlation between BFM and	vitamin D levels5	4
Figure (24):	Correlation between BFM and	IL-37 levels5	5
Figure (25):	Correlation between PBF and	vitamin D levels5	6
Figure (26):	Correlation between PBF and I	IL-37 levels5	6
Figure (27):	Correlation between hsCRP an	d vitamin D levels5	7
Figure (28):	Correlation between hsCRP an	d IL-37 levels5	8

List of Abbreviations

Abbreviation	Full term
1 25(OH) D	1.25 hydrovyvitomin D
	1,25-hydroxyvitamin D
	Antigen presenting cells
BFM	•
BMI	•
CD	
	C-reactive protein
	Computed tomography
CXCL10	C-X-C motif chemokine 10
DC	Dendritic cell
DNA	Deoxyribonucleic acid
DXA	Dual-energy x-ray absorptiometry
ESR	Erythrocyte sedimentation rate
G- CSF	Granulocyte-colony-stimulating factor
GM- CSF	Granulocyte-macrophage colony-stimulating factor
HBeAg	Hepatitis B e antigen
HS	Highly significant
hsCRP	Highly sensitive c-reactive protein
IBD	Inflammatory bowel disease
IFN- γ	Interferon-γ
IL	Interleukin
IL1F7	IL-1 family member 7
IQR	Interquartile range
LPS	Lipopolysaccharide
M1	Classically-activated macrophages
M2	Alternatively-activated macrophages
MHC	Major histocompatibility
	Magnetic resonance imaging

List of Abbreviations Cont...

Abb.	Full term
NAMES-ASU	Nutritional Assessment of Ain Shams University Medical Students
NF-kB	Nuclear factor kB
NK	Natural killer
NLRP3	NOD-like receptor family Pyrin Domain- Containing 3
NS	. Non-significant
PAMPs	. Pathogen associated molecular patterns
PBF	. Percent body fat
PTH	Parathyroid hormone
RA	. Rheumatoid arthritis
ROS	Reactive oxygen species
RXR	. Retinoic X receptor
S	. Significant
SiIL-37	. Silencing IL-37
SLE	. Systemic lupus erythematosus
SPSS	. Statistical package for Social Science
STAT-3	. Signal tranducer and activator of transcription 3
TGF- β1	. Transforming growth factor β1
Th	T-helper
TLR	. Toll like receptor
TNF	Tumor necrosis factor
T-reg	. T-regulatory lymphocytes
UC	. Ulcerative colitis
UVR	Ultraviolet rays
VDR	. Vitamin D receptor
VDREs	. Vitamin D response elements

Introduction

Interleukin (IL) -37, a newly discovered member of the IL-1 family, has been identified as a natural inhibitor of immune responses (*Nold et al.*, 2010).

Since its discovery, IL-37 has been studied extensively in immunological field. It has been established that IL-37 possesses anti-inflammatory characteristics both in innate immune response as well as in acquired immune responses by down regulating pro-inflammatory molecules (*Ding et al.*, 2016).

IL-37 has been found to play an important regulatory role in the development of a variety of inflammatory diseases, autoimmune diseases and tumors (*Jia et al.*, 2018).

Vitamin D refers to a group of fat-soluble secosteroid responsible for enhancing intestinal absorption of calcium, iron, magnesium, phosphate and zinc. In humans, the most important compounds in this group are vitamin D3 (also known as cholecalciferol) and vitamin D2 (ergocalciferol) (*Norman*, 2008).

Cholecalciferol and ergocalciferol can be ingested from the diet and from supplements. The body can also synthesize vitamin D in the skin, from cholesterol, when sun exposure is adequate (*Dusso et al.*, 2005).

While it was long held that vitamin D acted only at the intestine, kidney, and skeleton, and that its function was limited to calcium homeostasis, the possibility of extra skeletal effects has been considered for decades as a result of the discovery of the vitamin D receptor (VDR) in tissues that have no involvement in calcium homeostasis (e.g., skin, placenta, pancreas, breast, prostate, colon cells, and activated T cells). Discovery of the VDR in these tissues led to exploration of the roles and mechanisms of vitamin D function in each (Christakos et al., 2013).

AIM OF THE WORK

The aim of this study is to determine the relation between the level of interleukin-37 and 25-hydroxy Vitamin D among Ain Shams University medical students.

VITAMIN D

Vitamin D is a fat-soluble secosteroid that is naturally present in very few foods and also available as a dietary supplement (*Autier et al.*, 2014).

There is renewed interest in vitamin D synthesis, metabolism, and action. The two principal driving forces for heightened interest can be traced to: 1) the worsening worldwide trend of vitamin D insufficiency and 2) new knowledge regarding the nonhormonal, intracrine, and paracrine actions of 1-hydroxylated vitamin D (*Adams and Hewison*, 2010).

In humans, the most important empounds in this group are vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol). Ergocalciferol and cholecalciferol can be ingested from the diet and from supplements (*Nair and Maseeh*, 2012).

Vitamin D is a fat-soluble vitamin that is synthesized in the skin in response to sunlight exposure and then converted in the liver to 25-hydroxyvitamin, which is mainly transformed by the kidneys in 1,25-dihydroxyvitamin D also known as calcitriol (*Langlois et al.*, 2018).

I. Sources of Vitamin D

Vitamin D may come from three potential sources: nutritional sources, ultraviolet B-dependent endogenous production and supplements. In humans, vitamin D is mainly

Review of Titerature

synthesized in the skin after exposure to ultraviolet B whereas only a minor part is derived from dietary sources (*Prietl et al.*, 2013).

A. Food

Very few natural, non-fortified products such as fatty fish (salmon, mackerel, sardines, cod liver oil) or some types of mushrooms (Shiitake), especially if sundried, contain relevant amounts of one of the two major forms of vitamin D (cholecalciferol or ergocalciferol) (*Prietl et al.*, 2013).

B. Sun exposure

Most people meet at least some of their vitamin D needs through exposure to sunlight. Ultraviolet rays (UVR) with a wavelength of 290–320 nanometers penetrate uncovered skin and convert cutaneous 7-dehydrocholesterol to previtamin D_3 , which in turn becomes vitamin D_3 . Because any excess previtamin D_3 or vitamin D_3 is destroyed by sunlight, excessive exposure to sunlight does not cause vitamin D_3 intoxication (*Fernandes et al.*, 2014) (*Fig.1*).

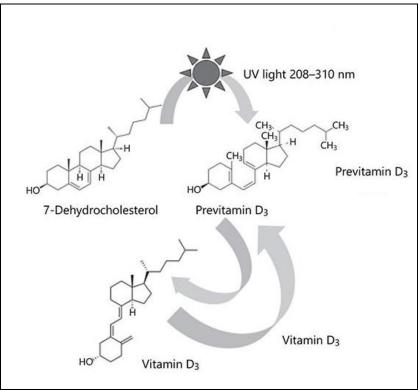


Figure (1): Photobiogenesis of vitamin D (Langlois et al., 2018).

C. Dietary supplements

In supplements and fortified foods such as milk and orange juice, vitamin D is available in both forms, D_2 (ergocalciferol) and D_3 (cholecalciferol) (*de Boer*, 2010).

Some countries like the United States and Canada fortify staple products such as dairy products with vitamin D. Thus, vitamin D dietary intake of an individual is highly dependent on nutritional habits, and the country's fortification strategy (*Tripkovic et al.*, 2012).