

Ain Shams University
Faculty of Science
Chemistry Department

New Trends for Preparing Mesoporous Catalysts to Produce Green Fuel

Submitted by

Heba Mohamed Salem

M.Sc. (Inorganic chemistry 2014)
Faculty of science –Ain shams University

For

Ph.D. Degree of science
In Chemistry

To

Chemistry Department
Faculty of science
Ain shams University

Ain Shams University
Faculty of Science
Chemistry Department

New Trends for Preparing Mesoporous Catalysts to Produce Green Fuel

Heba Mohamed Mohamed Salem

Supervisors	Approved
Prof. Dr. Salah Eldin Abdou Hassan	
Professor of Physical Chemistry, Chemistry Department,	•••••
Faculty of Science, Ain Shams University	
Prof. Dr.Heba Mahmoud Abdel Razik	
Professor in Catalysis lab. Refining Division,	•••••
Egyptian Petroleum Research Institute	
Dr. Amal Abdel Fattah Alkahlawy	
Researcher in Catalysis lab. Refining Division,	•••••
Egyptian Petroleum Research Institute	
Dr. Rasha El-Sayed Mohamed	
Researcher in Catalysis lab. Refining Division,	•••••
Egyptian Petroleum Research Institute	
Dr. Amir Ezzat Abo EL-Hassan	
Researcher of inorganic Chemistry, Chemistry Department,	•••••
Faculty of Science, Ain Shams University	

Head of chemistry Department Prof. Dr. Ayman Ayoub Abdel-Shafi

DEDICATION

I dedicate my dissertation work to my family.

A special feeling of gratitude to my loving father,
my mother, sisters and brothers.

I also dedicate this dissertation to my husband Mohamed for continuous support, encouragement and generous help throughout the progress of this study.

I wish to express my deep thanks to my sweety kids Rudina, Hussein and Renad.

Finally, I wish to express my great appreciation to my friends in the Egyptian Petroleum Research Institute (EPRI) for their encouragement and partnership.

ACKNOWLEDGMENTS

I am grateful to **Allah** the most merciful who blessed my efforts, showed me the way and provided me with power to present this work in an acceptable form.

I wish to express my sincere appreciation and gratitude to **Prof. Dr. Salah El-Din Abdu Hassan** (Professor of Physical Chemistry, Faculty of Science, Ain Shams University) for suggesting the project of the thesis, constructive criticisms and for giving me opportunity to my success.

I am greatly indebted to **Prof. Heba Mahmoud Abdel Razik** (Professor in Catalysis lab. Refining Division, Egyptian Petroleum Research Institute) her thankful the thesis title, for continuous effort in guiding me all through my research work, for providing materials, and constructive criticisms.

Hearty, I would like also to thank. And express my grateful gratitude to **Dr. Rasha and Dr Amal** (Researcher in Catalysis lab. Refining Division, Egyptian Petroleum Research Institute) for providing all work facilities and generous help and sincere sisterly care throughout this thesis.

Abstract

The present study was undertaken to synthesize new composite systems consisted of F₂O₃ NPs (5 wt %) loaded on neat SBA-15, Almodified SBA-15 and Zr-modified SBA-15 supports. The loading process was displayed by adopting microwave-assisted or ultrasonic-assisted routes. Various modification techniques of SBA-15, characterized by its well-ordered hexagonal arrays of mesoporoes, with 25 wt % of Al or Zr (the confirmed optimum ratio) included the following methods: impregnation post synthesis (Al or Zr-S (Imp)), ultrasonic post synthesis (Al or Zr-S(Us)) and in situ direct synthesis (Al or Zr-S(Inst)). The assynthesized catalytic systems were characterized adopting several techniques, viz., N₂ adsorption-desorption, XRF, XRD, TGA-DSC, FT-IR, TEM, EDX, H₂-TPR and NH₃-TPD. All the synthesized catalyst samples were examined in three different applications, namely, catalytic conversion of ethanol and methanol as two model compounds using micro pulse and continuous flow systems. In addition, the photocatalytic water splitting reaction was applied for hydrogen generation/storage under visible light irradiation. The results revealed that the applied modifications of the mother SBA-15, after incorporation of Al or Zr led to marked increase in the surface parameters as well as the acidity referred mainly to the presence of the favourable moderate Brönsted acid sites. The obtained results showed that all the studied catalytic systems are rather suitable for H₂ storage with maximum capacity. This was interpreted in view of the fitting modifications in the pore system and the whole structure profile of the catalyst samples used. The catalytic systems synthesized through ultrasonic-assisted route showed more prevailing behavior in the photocatalytic splitting process. Moreover, these catalysts exhibited the highest activity towards ethylene production, with a distinct increase in their yield and selectivity compared with those samples prepared by microwave assisted technique. Such behaviour was referred to the higher surface area, the change in the pore geometry (bimodal PSD) and the good dispersion mode beside the improvement in the whole texture properties. On the other hand, the yield and the selectivity of dimethyl ether over Fe(M)/Zr-S(Imp) were higher than those of Fe(Us)/Zr-S(Imp) to be 100 and 84.80% at 200° C, respectively. From the formetioned results obtained in this study, it could be suggested that the as-synthesized nanocomposites are promising candidates for green fuel production, in terms of H₂ storage materials through water splitting under visible light irradiation, methanol dehydration into dimethyl ether as alternative fuel, as well as ethanol dehydration into ethylene as a starting material for petrochemical industries.

Keywords: Fe/Al-SBA-15, Fe/Zr-SBA-15, Microwave and Ultrasonic assited synthesis routes, H₂-Storage, Water Splitting, Ethanol and methanol conversions.

CONTENTS

	Acknowledgement	
	Abstract	i
	Content	I
	List of Figures	IX
	List of Tables	XVIII
	List of Abbreviation	XXI
	Aim of Work	XXV
	CHAPTER (I)	
1.	INTRODUCTION	1
1.1.	Modified Heterogeneous Catalysts	1
1.2.	Mesoporous structuredMaterials	2
1.3.	Ordered Mesoporous Materials	3
1.4.	Ordered Mesoporous SBA-15	6
1.5.	Alumina-SBA-15	15
1.6.	Functionalization of SBA-15	22
1.7.	Main SBA-15 functionalization methods	23
1.7.1.	Direct synthesis method	23
1.7.2.	Post-synthesis or post-grafting method	24
1.7.3.	Deposition-precipitation (DP) method	26
1.7.4.	Graft hybrid (GH) method	28
1.7.5.	Colloid immobilization method	29
1.7.6.	Nanoparticle encapsulation method	30

		Contents
1.0		21
1.8.	Ultrasonic-Assisted Impregnation	31
1.8.1.	Mechanism of sonication	32
1.9.	Microwave –Assisted Technique	36
1.9.1.	Reaction mechanism of microwave heating	38
1.10.	Iron	45
1.11.	Zirconium	48
1.12.	Energy Challenge and Green fuels	50
1.12.1.	Catalytic conversion of methanol into	51
	di methyl ether (DME) as a green fuel	
1.12.2.	Hydrogen as a green fuel	55
1.12.2.1.	Water splitting	57
1.12.2.2.	Metal Oxide Semiconductors	60
1.13	Catalytic Conversion of Ethanol into	65
	Ethylene and Acetaldehyde	
	CHAPTER II	
2.	EXPERIMENTAL	70
2.1.	Materials	70
2.2.	Preparation of SBA-15 by hydrothermal	70
	method	
2.2.1.	Synthesis of Al-SBA-15 via direct synthesis	71
2.2.2.	Synthesis of Al-SBA-15 by ultrasonic post	71
	synthesis method	
2.2.3.	Synthesis of Al/SBA-15 by impregnation pos	t 72
	synthesis method	

2.2.4.	Loading of 5% Fe on 25% Al-SBA-15 via the	73
	microwave assisted solution radiation (M)	
	route	
2.2.5.	Loading of 5% Fe on 25% Al-SBA-15 via the	74
	ultrasonic post synthesis (U) route	
2.2.6.	Synthesis of 25% Zr/SBA-15 via direct	75
	synthesis	
2.2.7.	Synthesis of 25 % Zr/SBA-15 by ultrasonic post	75
	synthesis method.	
2.2.8.	Synthesis of 25% Zr/SBA-15 by impregnation	76
	post synthesis method	
2.3.	Catalyst characterization	76
2.3.1.	X-ray fluroscence (XRF) analysis	76
2.3.2.	Surface area measurement	76
2.3.3.	X-ray diffraction analysis (XRD)	77
2.3.4.	Fourier-Transform Infrared(FT-IR) analysis	77
2.3.5.	Transmission Electron Microscopy (TEM)	78
	analysis	
2.3.6.	Thermal Gravimetric analysis (DSC-TGA)	78
2.3.7.	Temperature Programmed Desorption	78
	of Ammonia (NH ₃ -TPD) analysis	
2.3.8.	Temperature Programmed Reduction (TPR)	79
2.3.9.	Pulse titration (H ₂ -Chemisorption) for	79
	estimation of metal dispersion parameters	
2.3.10.	The absorptivity of the semiconductors	80
2.4.	Catalytic Activity Measurements	80

		Contents
2.4.1	Continuous flow system	80
2.4.1.	Continuous flow system	
2.4.2.	Water Splitting	82
2.4.3.	Online pulse-reaction chromatography	83
	CHAPTER III	
	RESULTS and DISCUSSION	85
	Characterization of different catalytic system	s 85
	under study	
3.1.	Optimization of Al ratio for modification of	85
	SBA-15 by applying different techniques	
3.1.1.	From N ₂ -physisorption study on different Al-	85
	modified SBA-15 samples	
3.1.1.1.	N ₂ -physisorption results on neat SBA-15 and	Al- 85
	modified SBA-15 with different Al ratios via	
	one-pot in situ method	
3.1.1.2.	N ₂ physisorption results on Al-modified SBA-	15 88
	with different Al ratios via ultrasonic post	
	method	
3.1.1.3.	N ₂ physisorption on Al-modified SBA-15 with	90
	different ratios via Impregnation post method	I
3.1.2.	From NH ₃ -TPD study on different Al-modifie	ed 92
	SBA-15 samples	
3.1.2.1.	NH ₃ -TPD profiles for neat SBA-15 and Al-	92
	modified SBA-15 with different Al ratios via	one
	-pot direct synthesis route	

3.1.2.2.	NH ₃ -TPD profiles for Al-modified SBA-15 with	95
	different Al ratios via ultrasonic post method	
3.1.2.3.	NH ₃ -TPD profiles for Al-modified SBA-15 with	96
	different Al ratios via impregnation post method	
3.2.	Physicochemical characteristics of neat SBA-15	99
	and 25 % Al-modified SBA-15 systems	
	synthesized by different routes	
3.2.1.	XRF investigation	99
3.2.2.	Surface characteristics of neat SBA-15 and	100
	various 25 wt Al modified SBA-15 catalyst	
	samples	
3.2.3.	XRD analysis	102
3.2.4.	FTIR analysis	104
35.	TEM investigation	106
3.2.6.	DSC-TGA analysis	108
3.2.7.	NH ₃ -TPD profiles	109
3.3.	Characterization of 5 % Fe ₂ O ₃ loaded SBA-15	111
	and 5 % Fe-Loaded 25 % Al-SBA-15 catalysts	
3.3.1.	XRF analysis	111
3.3.2.	Surface characteristics	112
3.3.2.1.	Pore size distribution (PSD) models	115
3.3.3.	XRD analysis	118
3.3.4.	FTIR invesigation	118
3.3.5	TEM invesigation	120
3.3.6	NH2-TPD profiles	125

3.3.7.	H ₂ -TPR trends	128
(i)	H ₂ -TPR profiles	128
(ii)	Fe- surface dispersion modes from \mathbf{H}_2 -	130
	Chemisorption	
3.4.	Characterization of Zirconia-modified SBA-15	132
	Catalytic systems (Zr-SBA-15)	
3.4.1.	Surface characteristics	132
3.4.2.	XRD analysis	134
3.4.3.	FTIR analysis	136
3.4.4.	Thermal (TGA and DSC) analysis	137
3.4.5.	TEM investigation	138
3.4.6.	NH ₃ –TPD profiles.	140
3.5.	Characterization of (5 wt %) iron loaded on Zr-	142
	S(Imp) via microwave and ultrasonic methods	
3.5.1.	Surface characteristics	142
3.5.2.	XRD analysis	144
3.5.3.	FTIR investigation	145
3.5.4.	Thermal (TGA and DSC) analysis	146
3.5.5.	TEM investigation	148
3.5.6.	NH ₃ -TPD study	149
3.6.	Catalytic performance of synthesized systems	151
	under study	
3.6.1.	Catalytic Conversion of Methanol over	151
	synthesized catalytic systems under study	
3.6.1.1.	Catalytic conversion of methanol over SBA-15,	152
	Fe (M)/S and Fe(U)/S	

3.6.1.2.	Catalytic conversion of mehanol over Fe/Al-	156
	modified SBA-15 by using different methods.	
3.6.1.2.1.	Catalytic conversion of methanol over Al-	156
	modified-S(Inst), Fe (M)/Al-S(Inst) and	
	Fe(U)/Al-S(Inst).	
3.6.1.2.2.	Catalytic conversion of methanol over Al-	162
	modified-S(Us), Fe(M)/Al-S(Us) and Fe(U)/Al-	
	S(Us).	
3.6.1.2.3.	Catalytic conversion of methanol over Al	166
	modified-S(Imp), Fe(M)/Al-S(Imp) and	
	Fe(U)/Al-S(Imp) samples.	
3.6.1.3.	The catalytic conversion of methanol over	171
	zirconium modified catalysts and iron loaded on	
	Zr-S(Imp) via microwave and ultrasonic	
	methods	
3.6.2.	Photocatalytic performance of the synthesized	178
	catalystic systems under study	
3.6.2.1.	Mechanism of photocatalytic water splitting	178
3.6.2.2.	UV absorbance and energy band gaps	179
3.6.2.3.	Photocatalytic performance profiles in water	185
	splitting versus pore structure behaviour	
3.6.3.	Catalytic performance in enhancing ethylene	189
	production through ethanol dehydration	
3.6.3.1.	Catalytic conversion of ethanol over SBA-15 and	189
	Al-modified SBA-15 catalysts	

$\boldsymbol{\alpha}$	4		4
Co	nta	en:	۲S

3.6.3.2.	Catalytic conversion of ethanol over Fe loaded	196
	on SBA-15 and Al-modified SBA-15 via	
	microwave and ultrasonic assisted routes	
3.6.3.2.1.	The catalytic conversion of ethanol over Fe	196
	loaded on SBA-15 and Al-modified SBA-15 via	
	microwave assisted route	
3.6.3.2.2.	Catalytic conversion of ethanol over Fe loaded	202
	via ultrasonic-assisted route on SBA-15 and	
	different Al-modified SBA-15	
	SUMMARY	208
	References	216
	Arabic summary	

List of Figures

Fig. 1	Pore models of mesostructures of (A) p6 mm,	5
	(B) Ia3d, (C) Pm3n, (D) Im3m, (E) Fd3m and	
	(F) Fm3m.	
Fig. 2	Hydrolysis of silica source.	7
Fig. 3	Silica network (1): alcohol condensation.	8
Fig. 4	Silica network (2): water condensation.	8
Fig. 5	S ⁰ H ⁺ X ⁻ I ⁺ interaction.	9
Fig. 6	Schematic representation of SBA-15 before	10
	calcination.	
Fig. 7	Schematic representation of SBA-15 after	11
	calcination.	
Fig. 8	Preparation of the Al-SBA-15 mesoporous	19
	materials with different morphologies.	
Fig. 9	Preparation of Al@SBA-15 composites	21
	and Pt/Al@SBA-15 catalysts.	
Fig. 10	Main steps of SBA-15 functionalization by	24
	direct synthesis method.	
Fig. 11	Main steps of SBA-15 functionalization by	26
	post- synthesis method.	
Fig. 12	Main steps of SBA-15 functionalization by	27
	deposition-precipitation (DP).	
Fig. 13	Main steps of SBA-15 functionalization by	28
	graft hybrid (GH) methods.	