

Role of Ratio of Progesterone to Number of Follicles as a Prognostic Tool for Intracytoplasmic Sperm Injection Outcome

Thesis

Submitted for Partial Fulfillment of Master Degree in **Obstetrics and Gynecology**

Presented by

Ahmed Nasr Ali Etman

M.B.B.Ch (2012), Ain Shams University Resident of Obstetrics and Gynecology, Manshyet El Bakry Hospital

Supervised by

Prof.Dr.Ahmed Mohamed Nour El-Din Hashad

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Mohamed AbdelLatif Abdel Haleem Daoud

Lecturer of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سم الله الرحيم

وقُل اعْمَلُوا فَسَيْرَكَى اللهُ عَمَلُوا فَسَيْرَكَى اللهُ عَمَلُوا فَسَيْرَكَى اللهُ عَمَلُوكُ وَالمُؤْمِنُونَ عَمَلُكُ مُ وَمَرَسُولُهُ وَالمُؤْمِنُونَ عَمَلُكُ مُ وَمَرَسُولُهُ وَالمُؤْمِنُونَ

صدق الله العظيم [سورة: التوبة - الآية: ١٠٥]

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest gratitude to **Prof. Dr. Ahmed Mohamed Mour & L-Din Washad,**Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his valuable advice, encouragement, guidance, great support and continuous help.

Many thanks to **Dr. Mohamed AbdelLatif**Abdel Haleem Daoud, Lecturer of Obstetrics and

Gynecology Faculty of Medicine, Ain Shams

University, for his generous help, very kind assistance,

honest guidance and continuous support.

Finally, I would like to thank my family for their support and care.

Ahmed Nasr Ali Etman

List of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	7
List of Figures	8
Protocol	
Introduction	1 -
Aim of the Work	11
Review of Literature	
■ The Ovary	12
■ Progesterone	33
■ Components of ICSI	42
■ Factors Affecting the Outcome of ICSI	55
Patients and Methods	65
Results	72
Discussion	90
Conclusion	100
Summary	101
References	103
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
AFC	Antral follicle concentration
	Assisted reproductive technology
	American Society for Reproductive Medicine
AZF	.Azoospermia factor
BMI	. Body mass index
<i>CC</i>	. Clomiphene citrate
CFTR	. Cystic fibrosis transmembrane conductance
COH	. Controlled ovarian hyperstimulation
E2	. Estradiol
<i>ESHRE</i>	European society for human reproduction
<i>ET</i>	.Embryo transfer
FSH	. Follicle stimulating hormone
<i>GIFT</i>	. Gamete intrafallopian transfer
<i>GnRH</i>	. Gonadotrphine releasing hormone
HCG	$. \ Human\ chorionic\ gonadotrophin$
НН	$. \ Hypergona dot roph in e\ hypogona dism$
<i>hMG</i>	$. \ Human\ menopausal\ gonad trophine$
<i>ICSI</i>	$. In tracy to plasmic\ sperm\ injection$
<i>IVF</i>	$. In vitro\ fertilization$
<i>LH</i>	Leutinizing hormone
<i>LNV</i>	Large nuclear vacuoles
<i>MESA</i>	.Microsurgical epididymal sperm aspiration
<i>OHSS</i>	Ovarian hyperstimulation syndrome

Tist of Abbreviations cont...

Abb.	Full term
P4	Progesterone
PCOS	Polycystic ovarian syndrome
PGD	Preimplantation genetic diagnosis
<i>PID</i>	Pelvic inflammatory disease
POF	Premature ovarian failure
PR	Pregnancy rate
<i>rFSH</i>	$Recombinant\ FSH$
ROS	Reactive oxygen species
<i>SART</i>	Society for Assisted Reproductive Technology
<i>UI</i>	Unexplained infertility
ZIFT	Zygote intrafallopian transfer

Tist of Tables

Table No.	Title	Page No.
Table (1):	Reference ranges	38
Table (2):	Characteristics of the study group	
Table (3):	Distribution of the studied group as	regard
	chemical pregnancy	75
Table (4):	Distribution of the studied group as	regard
	clinical pregnancy (gestional sac with	h heart
	motion).	
Table (5):	Demonstrate type of infertility	77
Table (6):	Relationship between Clinical pregnar	
	woman's age	*
Table (7):	Relationship between Clinical pregnar	ncy and
	woman's body mass index	•
Table (8):	Relationship between Clinical pregnar	
	duration of infertility	
Table (9):	Relationship between Clinical pregnar	
	type of infertility	81
Table (10):	Relationship between Clinical pregnar	ncy and
	number of embryos transferred	
Table (11):	Relationship between Clinical pregnar	
	antral follicle count	83
Table (12):	Relationship between Clinical pregnar	ncy and
	Basal FSH	84
Table (13):	Relationship between Clinical pregnar	
	Endometrial thickness	85
Table (14):	Relationship between Clinical pregnar	ncy and
	Progesterone on day of Hcg admin	86
Table (15):	Relationship between Clinical pregnar	
	Progesterone/number of Follicle Ratio	87
Table (16):	Independent predictors of	Clinical
	pregnancy: Logistic Regression model	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Frontal section in the female representation system (Atlas of human anatomy, 2011 edition)	F.Netter
Figure (2):	Stage of oocyte maturation	14
Figure (3):	Follicular phase diagram of hormetheir origins	
Figure (4):	Diagram of the menstrual cycle	20
Figure (5):	The progression of the menstrual of the different hormones contributing	•
Figure (6):	Menstrualcycle diagram University of Pittsburgh Medical Sc	<u>-</u>
Figure (7):	In Vitro fecundation (FIV-ICSI)	43
Figure (8):	Embryo development - 5 days overv	iew47
Figure (9):	Embryo development - 5 days overv	iew48
Figure (10):	Time Lapse Imaging (Embryoscope)	52
Figure (11):	Embryo selection	52
Figure (12):	ICSI live birth rate for smoking smoking women, by cause of subfert	
Figure (13):	Dot plot showing the frequency dis of the age in the study population	
Figure (14):	Dot plot showing the frequency dis of the BMI in the study population.	
Figure (15):	Distribution of the studied group a chemical pregnancy	
Figure (16):	Distribution of the studied group a clinical pregnancy.	as regard
Figure (17):	Demonstrate type of infertility	
Figure (18):	ROC curve for all cases	

Introduction

rogesterone elevation (PE) has been observed during controlled ovarian stimulation (COS) using gonadotropins and gonadotropin-releasing hormone (GnRH) analogs, occurring mainly at the end of the follicular phase and on the day of human chorionic gonadotropin (hCG) administration. Its frequency varies, but it occurs in up to 35 % of cycles in patients treated with a GnRH agonist and in up to 38 % of cycles in those treated with a GnRH antagonist (*Bosch et al.*, 2010).

A recent meta-analysis has suggested that PE during COS is associated with a decreased probability of pregnancy following fresh embryo transfer (ET), but this elevation is not associated with the outcome of frozen—thawed transfer (FET) (Venetis et al., 2013).

These data suggest that PE may be associated with adverse effects on the endometrium (specifically, advanced endometrial histological maturation and altered gene expression) and that it does not negatively impact embryo quality (*Papanikolaou et al.*, 2012).

Thus, patients with PE during a fresh cycle would benefit from elective FET, for which the entire cohort of embryos is cryopreserved and the embryo transfer is performed later in a natural cycle or in a cycle with hormonal replacement for endometrial priming (*Roque et al.*, 2013).

However, deleterious progesterone (P) levels may vary according to ovarian response (Griesinger et al., 2013). Thus, it would be better to define a ratio between P level and ovarian response instead of using a single P level as a prognostic tool.

AIM OF THE WORK

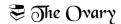
This study aims to assess the accuracy of progesterone to follicle number ratio for predicting pregnancy outcome in women under going ICSI.

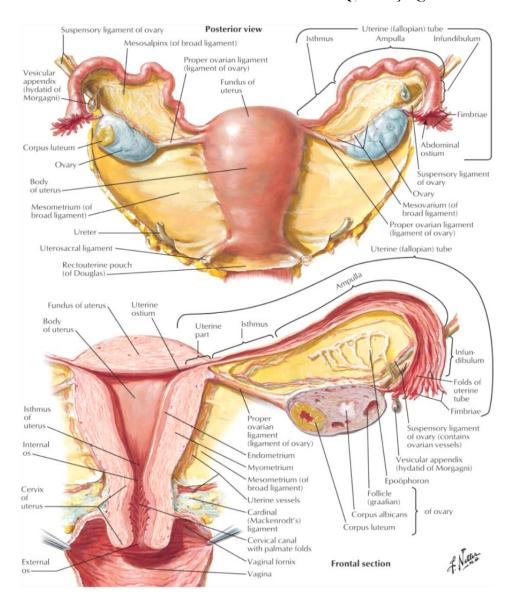
Research hypothesis:

In women under going ICSI, the ratio between progesterone to the number of follicles may predict the clinical pregnancy rate or outcome accurately.

Research question:

In women undergoing ICSI, does the ratio of progesterone at day of HCG injection and number of follicles predict the pregnancy rate accurately.


Chapter 1:


THE OVARY

The ovaries develop from the incorporation of primordial germ cells into coelomic epithelium of the mesonephric (wolffian) duct. The embryologic ovaries migrate caudad to the true pelvis. Primordial ovarian follicles develop but remain dormant until stimulation in adolescence by gonadotropins (*Rey et al.*, 2016).

Ovarian follicular development begins while the female fetus is in-utero. During the fifth week of pregnancy, a female fetus's ovary contains about 500 to 1300 primordial germ cells. The primordial germ cells undergo mitosis, and by the twentieth week of pregnancy, the female fetus has approximately 6 to 7 million germ cells. Once mitosis is complete, the germ cells enter meiosis and arrest in meiotic prophase I forming germ cell cysts (*Sun et al.*, 2017).

Many germ cells are lost during this process, and the female is born with one to two million primordial follicles. By the time she reaches puberty, approximately 400,000 to 500,000 primordial follicles remain. After menarche, approximately 1000 follicles are lost monthly. After 35 years of age, the rate of follicular loss increases (*Sun et al.*, 2017).

Figure (1): Frontal section in the female reproductive system (Atlas of human anatomy, F.Netter 2011 edition).

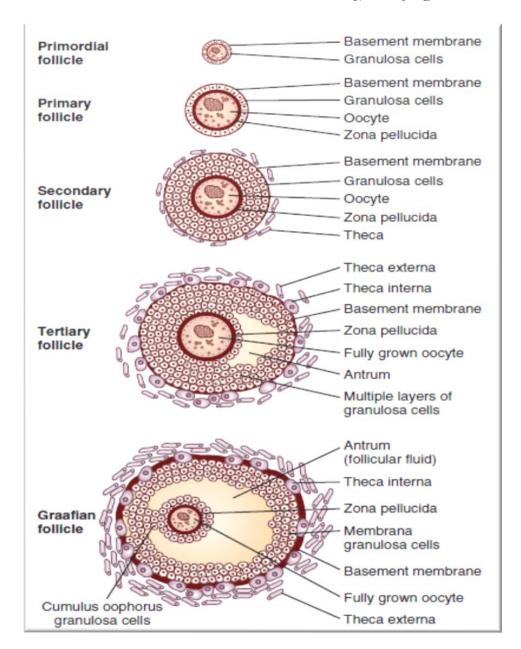


Figure (2): Stage of oocyte maturation.

In the adult, non-pregnant state, the ovaries lie on each side of the uterus close to the lateralpelvic wall. They are dull white in color and consist of dense fibrous tissue, in which ova

are embedded. Before regular ovulation begins, they have a smooth surface but, thereafter, their surfaces are distorted by scarring that follows the degeneration of successive corpora lutea. Their average dimensions are $4 \times 2 \times 3$ cm in reproductively mature women. In the neonate, their dimensions are $1.3 \times 0.6 \times 0.4$ cm (*Summer et al.*, *2016*).

The ovary is essential for periodic release of oocytes and production of the steroid hormones, estradiol and progesterone. These activities are integrated into the cyclic repetitive process of follicular maturation, ovulation, and formation and regression of the corpus luteum. The ovary fulfills two major objectives: generation of a fertilizable ovum and preparation of the endometrium for implantation through the sequential secretion of estradiol and progesterone (*Brendan Van Iten*, 2016).

The ovarian follicle comprising the egg and surrounding granulosa and theca cells constitutes the fundamental functional unit of the ovary. Adult human ovaries are oval bodies with a length of 2 to 5 cm, a width of 1.5 to 3 cm, and a thickness of 0.5 to 1.5 cm. The ovaries lie near the posterior and lateral pelvic wall and are attached to the posterior surface of the broad ligament by the peritoneal fold, called the *mesovarium* (*Edson et al.*, 2009).

The ovary consists of three structurally distinct regions: an outer cortex containing the surface germinal epithelium and the