

Detection of Central Pulmonary Embolism on Non-Contrast CT

Thesis

Submitted for Partial Fulfillment of Master Degree in **Radio diagnosis**

By

Remon Nader Nathan Samuel

M.B.B.Ch.

Faculty of Medicine, zagazig University

Supervised by

Ass. Prof. Dr. Remon Zaher Elia

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr. Hend Galal Eldeen Mohamed Ali Hassan

Lecturer of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my deepest gratitude and thanks to Ass. Prof. Dr. Remon Zaher Elia, Ass. Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for giving me the honor of being his candidate, working under his supervision, guided by his experience and precious advices and true concern.

Words could not express my great appreciation, thanks and respect to **Dr. Hend Galal Eldeen**Mohamed Ali Hassan, Lecturer of Radiology, Faculty of Medicine, Ain Shams University, for her kindness, patience, consideration, precious assistance throughout this work.

Last, but not least, I would like to express my appreciation and thanks to my family.

Remon Nader Nathan Samuel

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	11
Introduction	1 -
Aim of the Work	16
Anatomy	17
 Risk Factors and Pathophysiology of Pulmonary 	y Embolism38
 Morphology and Clinical Features of Pulmonary 	y Embolism58
Radiological Findings	65
Patients and Methods	84
Results	
Illustrative Cases	99
Discussion	
Summary	
Conclusion	
References	
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table 1:	Predisposing factors for thromboembolism	
Table 2:	Wells score for pulmonary embolism.	
Table 3:	Computed Tomography Findings of and Chronic Pulmonary Embolus	of Acute
Table 4:	Scanning parameters used for CT pu angiography.	lmonary
Table 5:	The range of age and mean age of the group as well as the sex distribution.	
Table 6:	The clinical presentation among the patients.	studied
Table 7:	The Distribution of thrombus am studied patients.	ong the
Table 8:	Comparing positive and negative between CTA and non-contrast detection of central pulmonary embol	results CT in
Table 9:	Showing other associated indirection found in patients with central pu	t signs lmonary
Table 10:	embolism	contrast
Table 11:	pulmonary embolism	97 of non-
	pulmonary embolism in our study	

List of Figures

Fig. No.	Title	Page No.
D: 1	T	1.17
Fig. 1:	Lungs and mediastinum	
Fig. 2:	Pulmonary arteries and veins The relations of pulmonary arterie	
Fig. 3:	primary bronchi seen from the front.	
Fig. 4:	Bifurcation of the pulmonary trunk	
r 1g. 4.	the tracheal bifurcation	
Fig. 5:	Distribution of the PA in both lungs	
Fig. 6:	Pulmonary artery distribution	
Fig. 7:	Chest CT showing pulmonary	
rig	bifurcation	•
Fig. 8:	3D CT A, Anterior view of main pulm	
1 19. 0.	trunk passing posteriorly. $\underline{\mathbf{B}}$, Posterior	•
	with aorta and spine removed	
Fig. 9:	CT pulmonary angiogram	
Fig. 10:	MDCT shows reconstructed coronal	
g ,, ,	of peripheral pulmonary vasculature	•
Fig. 11:	Diagrams illustrating typical and va	
8	pulmonary venous anatomy	
Fig. 12:	Pulmonary venous anatomy on cardia	
Fig. 13:	Delayed image on catheter angiog	
O	demonstrating pulmonary veins dra	aining
	into the LA	36
Fig. 14:	Acute pulmonary embolism (PE) i	n 78-
	year-old woman	39
Fig. 15:	Acute pulmonary embolism (PE) i	n 78-
	year-old woman	
Fig. 16:	42 years old woman with tumor emb	
	and metastatic cervical care	
	invading left common iliac vein	
Fig. 17:	19 years old man with progr	
	dyspnea and known osteosarcoma	
	humerus	46

Fig. No.	Title	Page No.
Fig. 18:	52 years old woman with septic e bacteremia, dyspnea, and fever	
Fig. 19:	17 years old woman with CT fire consistent with mild form of fat embed	ndings
Fig. 20:	80 years old woman with ca	
Fig. 21:	72 years old man with no symptocement embolism after livertebroplasty for metastatic renacarcinoma	umbar al cell
Fig. 22:	33-year-old previously healthy with amniotic fluid embolism	voman
Fig. 23:	57 years old man with progradyspnea, talc pulmonary embolism history of drug use	ressive n, and
Fig. 24:	44-year-old man with hydatid pulm embolism due to liver hydatidosis	nonary
Fig. 25:	42 year's old woman with prograyspnea and iodinated oil embolism lymphangiography	n after
Fig. 26:	45-year-old man with pulmonar embolism caused by CT injector	y air
Fig. 27:	Large saddle embolus from the fewer vein lying astride the main left and pulmonary arteries	emoral l right
Fig. 28:	A small, roughly wedge-s hemorrhagic pulmonary infarct of occurrence	shaped recent
Fig. 29:	Fleischner sign	
Fig. 30:	A Frontal chest X-ray does not reve parenchymal abnormalities	al any
Fig. 31:	Westermark sign	
Fig. 32:	Pulmonary infarct and Hampton hur	mp68

Fig. No.	Title Po	age No.
Fig. 33:	A Frontal chest X-ray reveals lin densities in both lower lobes	69
Fig. 34:	(a) Plain chest radiography reve	
	Hampton's hump (area between wh	
	arrow) and palla's sign (arrow he (b and c): Contrast-enhanced chest	
	reveals filling defect in right pulmon	
	trunk with wedge-shaped pulmon	•
	infarction base-on right pleural surface.	
Fig. 35:	Unenhanced and contrast-enhanced ch	
O	CT scans of a 58-year-old man with ch	est
	pain	70
Fig. 36:	Pulmonary embolism on non contrast a	
	contrast-enhanced chest compu	
	tomography (CT) scan	
Fig. 37:	Unenhanced multidetector CT (MDC	
	scan shows high-attenuation "sadd	
	embolus (arrow) which was confirmed CTPA	•
Fig. 38:	Computed tomography findings of ac	
1 19. 00.	pulmonary embolus	
Fig. 39:	Acute pulmonary embolus. Shows h	
J	dense filling defect of right main pulmon	· -
	artery	
Fig. 40:	Chronic pulmonary thromboembolism in	
	80-year-old woman with a history of ac	
5	pulmonary thromboembolism	
Fig. 41:	Computed tomography (CT) findings	
Fig. 49.	chronic pulmonary embolus	
Fig. 42: Fig. 43:	Pulmonary embolism in transit	
Fig. 44:	Pulmonary embolism on ventilati	
- 19. 11.	perfusion scan	

Fig. No.	Title Po	age No.
Fig. 45:	Ultrasound image of DVT	
Fig. 46:	Pulmonary embolism on pulmon angiogram	
Fig. 47:	Pie chart illustrating the sex distribut	ion
Fig. 48:	among our study group Bar graph illustrating the incidence	
r 1g. 46:	different clinical presentations among	
T ! 40	study population	
Fig. 49:	Pie chart illustrating the distribution the thrombus along the pulmonary t	
	among our study group	
Fig. 50:	Bar graph illustrating the percentage	
	positive cases for pulmonary emboli found by each modality	
Fig. 51:	Pie chart showing other associa	ted
Fig. 59.	indirect signs of pulmonary embolism Bar graph illustrating the percentage	
Fig. 52:	positive and negative cases for pulmons	
T	embolism found by non-contrast CT	
Fig. 53:	Bar graph illustratediagnostic accuracy non-contrast multidetector compu	
	tomography in detection of cent	
D' . F4	pulmonary embolism	
Fig. 54:	Pulmonary embolism (A-B) non contr CT image. (C) sagittal CTA image.	
	axial CTA image	100
Fig. 55:	Pulmonary embolism (A) Axial r contrast CT image. (B) Axial CTA image	
Fig. 56:	Pulmonary embolism (A) Axial r	
_	contrast CT image. (B) Axial CTA image	e104
Fig. 57:	Pulmonary embolism (A) Axial r contrast CT image. (B) Axial CTA ima	
	(C) Lung window image	_

Fig. No.	Title	Page No.
Fig. 58:	Pulmonary embolism (A) Axial contrast CT image. (B) Axial CTA image.	
Fig. 59:	Axial CT chest (A) Axial non contra image. (B) Axial CTA image	st CT
Fig. 60:	Axial CT chest (A) Axial non contra image. (B) Axial CTA image	st CT
Fig. 61:	Axial CT chest (A) Axial non contra image. (B) Axial CTA image	st CT
Fig. 62:	Pulmonary embolism (A) Axial contrast CT image. (B) Axial CTA image.	non
Fig. 63:	Pulmonary embolism (A) Axial contrast CT image. (B) Axial CTA image.	non

Tist of Abbreviations

Abb.	Full term
3D	Three dimensional
	Curved planar reformat
	Computerized tomographic
	Computed tomography pulmonary
01111	angiography
DVT	Deep venous thrombosis
FN	-
FP	
<i>I.V.</i>	_
	Low osmolar contrast medium
	Multidetector computed tomography
	Maximum intensity projection
	Multiplanar reformation
	Magnetic resonance imaging
	Magnetic resonance pulmonary
	angiography
MSCT	Multi-slice computed tomography
	Negative predictive value
	Pulmonary embolism
	Prospective Investigation of Pulmonary
	Embolism Diagnosis
PPV	Positive predictive value
TN	
<i>TP</i>	8
	Ultrasonography
	Ventilation/perfusion scan
	Volume rendering
	Venous thromboembolism

Introduction

Pulmonary embolism is an important cause of patient morbidity and mortality. The ante-mortem diagnosis of PE is difficult to establish clinically, because the symptoms and signs are nonspecific and may be absent (*Rosenow*, 1995).

The potentially life-threatening nature of acute pulmonary emboli (PE) reinforces the importance of their early detection for patient survival. Acute PE have an incidence between 23 and 69 cases per 100,000 individuals (*Anderson et al.*, 1991) with a variable fatality rate reaching up to 30 % if untreated, based on the extent of the emboli (*Konstantinides*, 2008).

misdiagnosis The perils of the of pulmonary thromboembolism are well known to clinicians: the risks of unnecessary anticoagulant treatment are as undesirable as the danger of a missed diagnosis of pulmonary thromboembolism. The clinical manifestations of pulmonary thromboembolism are extremely variable and depend primarily on the size of the embolus. Small emboli are often sub clinical, whereas larger emboli may give transient symptoms, which can mimic other conditions. Finally, massive embolism in previously a symptomless individual can be fatal, with the diagnosis only made at autopsy (Tocino et al., 1984).

Clinical diagnosis of pulmonary embolism offers many challenges that are not settled despite the use of numerous imaging modalities and various diagnostic schemes (Goodman & Lipchik, 1996).

Pulmonary embolism (PE) can be diagnosed accurately with pulmonary arteriography, which is recognized as the diagnostic standard of reference, with sensitivity and specificity both greater than 95%. However, arteriography is not routinely performed because it is more invasive, Ventilation-perfusion (V/Q) radionuclide lung scanning is the most frequently performed noninvasive imaging study for the diagnosis of PE. Yet, the sensitivity of V/Q scanning is high, and specificity is low; therefore, a more accurate non-invasive diagnostic study has long been sought (Drucker et al., 1998).

An imaging modality that combines the noninvasive nature of V/Q scanning with a high sensitivity and specificity and that enables direct visualization of PE is desirable (Garg et al., 1998).

The introduction of spiral Computed tomographic (CT) angiography has modified the diagnostic approach regarding pulmonary embolism and has enabled a noninvasive insight into the endovascular abnormalities (Remy-Jardin et al., 1997).

Computed tomography pulmonary angiography (CTPA) had initially been shown to be a valid modality for the detection of thromboemboli in second- to fourth-division (segmental)

pulmonary vessels but has now largely replaced pulmonary angiography as modality of choice for the detection of PE regardless of location, as newer multi-detector scanners are capable of reliably detecting emboli even at the sub segmental level. At the same time, CTPA allows simultaneous evaluation of the mediastinum, lung parenchyma, identification of calcified lesions, and the concurrent diagnoses of alternative etiologies of chest pain, such as aortic dissection. Compared to ventilation and perfusion scintigraphy, CTPA offers greater availability and shorter acquisition times, with almost immediate delivery of results (Stein et al., 2006).

The detection of PE located in the central pulmonary arteries is critical, as an obstruction at this level can significantly compromise central perfusion and result in sudden death. Because certain authors have reported the detection of PE on a non-contrast chest CT (Tatco and Piedad, 2011), this should be added to the list of incidental findings that the radiologist should be on the lookout for when reporting an unenhanced study as they are commonly performed for the investigation of a variety of cardiopulmonary symptoms (Müller, 2002).

The incidental detection of a PE on non-contrast CT could be advantageous in the emergent context and also in patients with pre-existing renal disease or known allergies to contrast agents in a situation without viable alternative (Kanne et al., 2003).

Although non-contrast CT is not a valid diagnostic modality for the detection of PE, recent studies have reported reasonably consistent recognition of pulmonary clots on noncontrast CT, most notably in cases of centrally located emboli (Taco and Piedad, 2011). These studies show that hyper density on non-contrast chest CT can be a sign of a recent clot in central pulmonary arteries.