

Evaluation of the use of Probiotics in Patients with Irritable Bowel Syndrome

AThesis

Submitted for partial fulfillment of master degree in Tropical Medicine

By

Omar Ahmed Mohamed Abdel-Samie

M.B.B.Ch

Under supervision of

Prof. Dr. Eman Mohamed ElGindy

Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Iman Mohamed Fawzy

Assistant Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Dr. Heba Ismail Saad

Lecturer of Tropical Medicine Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Eman**Mohamed ElGindy, Professor of Tropical Medicine, Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Dr. Iman Mohamed Fawzy, Assistant Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Heba Ismail Saad**, Lecturer of Tropical Medicine, Faculty of
Medicine, Ain Shams University, for her great help,
active participation and guidance.

Omar Ahmed Mohamed Abdel-Samie

List of Contents

Title	Page No.	
List of Abbreviations	i	
List of Tables	iv	
List of Figures	v	
Introduction	1	
Aim of the Work	4	
Review of Literature		
Irritable Bowel Syndrome "IBS"	5	
• Intestinal Microbiota and Role of Probiotics in IBS34		
Patients and Methods	66	
Results	80	
Discussion	104	
Summary	120	
Conclusion	123	
Recommendations	124	
References	125	
Arabic Summary	1	

List of Abbreviations

Abb.	Full term
5-HT	5-hydroxytryptamine
A.muciniphila	Akkermansia muciniphila
ACG	American college of gastroenterology
AMPs	Antimicrobial proteins
Anti-PD1	Anti-programmed cell death protein 1
B. Fragilis	Bacillus Fragilis
BDA	British diabetic association
CD	Celiac disease
CCK	Cholecystokinin
CBC	Complete Blood Count
CRP	C-Reactive protein
CD	Crohn's disease
DNA	Deoxyribonucleic acid
ENS	Enteric nervous system
ESR	$Erythrocyte\ sedimentation\ rate$
EcN	Escherichia coli Nissle
ESPCG	European Society for Primary Care Gastroenterology
F. Prausnitzii	Faecalibacterium prausnitzii
FMT	$Fecal\ microbial\ transplantation$
FODMAPs	Fermentable oligosaccharides, Disaccharides, Monosaccharides and polyols
FD	Functional dyspepsia
FGIDs	$Functional\ gastroint estinal\ disorders$
SpaCBA	functional mucus binding pili
GABA	$Gamma\hbox{-}aminobutyric\ acid$
GI	Gastrointestinal
HFD	High fat diet
HPA axis	$Hypothalamic pituitary adrenal\ axis$
IG	Immunoglobulin

List of Abbreviations (Cont...)

Abb.	Full term
IBD	Inflammatory bowel disease
IL	Interleukin
IBS	Irritable bowel syndrome
IBS-QOL	Irritable Bowel Syndrome – Quality of Life
IBS-SSSS	Irritable Bowel Syndrome – Symptom Severity Scale
IBS-M	Irritable bowel syndrome mixed
IBS-C	Irritable bowel syndrome predominant constipation
IBD-D	Irritable bowel syndrome predominant diarrhea
IBS-U	Irritable bowel syndrome unsubtyped
$L.\ Acidophilus$	$Lactobacillus\ Acidophilus$
L. Casei	Lactobacillus Casei
L. Reuteri	$Lactobacillus\ Reuteri$
L. Rhamnosus	$Lactobacillus\ Rhamnosus$
LPS	$Lipopolysaccharide \ $
MACs	${\it Microbiota-accessible\ carbohydrates}$
MS	Multiple sclerosis
NES	Neuro-endocrine system
RA	Rheumatoid arthritis
SIgA	Secretory IgA
SSRIs	Selective serotonin reuptake inhibitors
SCFAs	Short chain fatty acids
SCFA	Short-chain fatty acid
SIBO	Small intestinal bacterial overgrowth
SCN5A	Sodium channel, voltage gated, type V alpha subunit
SFB	Spore forming bacteria
TOT-BI	Total- Body Image
TOT- DY	Total- Dysphoria
TOT-FA	$Total ext{-} Food\ Avoidance$

List of Abbreviations (Cont...)

Abb.	Full term
$TOT ext{-}HW$	Total- Health Worry
TOT- IN	Total- Interference with Activity
TOT- RL	$Total ext{-} Relationship$
$TOT ext{-}SX$	Total- Sexual
$TOT ext{-}SR$	Total- Social Reaction
$TOT ext{-}OV$	$Total ext{-}Overall$
TMA	Trimethylamine
T2DM	Type 2 Diabetes Mellitus
NICE	UK's National Institute of Health and Care Excellence
UC	Ulcerative colitis
$V\!AS\ score$	visual analog scale score
VDRs	$Vitamin\ D\ receptors$

List of Tables

Table No.	Title	Page No.
Table (1):	Rome Criteria for Diagnosing IBS	20
Table (2):	Personal data of the studied groups	82
Table (3):	Medical history of the studied groups	83
Table (4):	Type of IBS in all patients included in the	ne study84
Table (5):	Type of IBS in Group 1 and Group 2	85
Table (6):	Baseline laboratory investigations of t	
Table (7):	Baseline ultrasound findings of the stud	ied groups . 87
Table (8):	Baseline diagnostic questionnaire	88
Table (9):	Baseline IBSS score*	89
Table (10):	Baseline QOL scores	90
Table (11):	IBSS score before and after treatment (g	group 1)91
Table (12):	IBSS score before and after treatment (g	group 2)92
Table (13):	QOL scores before and after treatment (group 1)93
Table (14):	QOL score before and after treatment (g	group 2)94
Table (15):	Comparison between the two groups IBSS score at 2 and 4 weeks after treatments	
Table (16):	Comparison between the two groups QOL scores after four weeks of treatmen	0

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Shows the effect of IBS on work issues	
Figure (2):	Shows the evolving pathogenic med in IBS	
Figure (3):	Comparison between the 2 groups r IBSS score after 2 weeks	
Figure (4):	Comparison between the 2 groups r IBSS score after 4 weeks	
Figure (5):	Comparison between the two regarding change in IBSS score over	
Figure (6):	Comparison between the 2 groups r Dysphoria score after 4 weeks of trea	•
Figure (7):	Comparison between the 2 groups r Interference with activity score after of treatment	4 weeks
Figure (8):	Comparison between the 2 groups r health worry score after 4 w treatment	eeks of
Figure (9):	Comparison between the 2 groups r social reaction score after 4 w treatment	reeks of
Figure (10):	Comparison between the 2 groups r relationship score after 4 weeks of tr	•
Figure (11):	Comparison between the 2 groups r overall QOL score after 4 weeks of tr	
Figure (12):	Comparison between the two groups change in overall QOL score overtime	

Introduction

(rritable bowel syndrome (IBS) is one of the most prevalent Inctional gastrointestinal disorders (FGIDs), afflicting around 11% of the adult population worldwide. Due to the lack of specific and sensitive diagnostic biomarkers, IBS is still diagnosed by symptomatic criteria, namely the Rome criteria (Rome IV in its current version) (Drossman and Hasler, 2016).

The Rome Foundation, an independent body dedicated to assisting in the diagnosis and treatment of functional gastrointestinal disorders "FGIDs", published the "Rome IV criteria" for the diagnosis of IBS in May 2016 (Ford et al., 2017).

IBS threatens the quality of life of millions and poses a substantial financial burden on healthcare systems around the world (Kennedy et al., 2014). IBS accounts for up to 50% of general practitioners for gastrointestinal (GI) complaints (Hillilä et al., 2010).

Despite the availability of a great variety of therapeutic options, treatment satisfaction is suboptimal for both the patient and the doctor (Lacy, 2016). A relevant implication of treatment dissatisfaction is a marked reduction in quality of life and growing social, sanitary and economic burden worldwide (Buono et al., 2017).

There is strong evidence supporting the role of bacterial, viral and parasitic infections in triggering IBS (*Klem et al.*, 2017). Some IBS patients respond well to certain non-absorbable antibiotics and prebiotic/probiotic administration (Moraes-Filho and Ouigley, 2015), some of them show improvement after fecal transplantation. Therefore, the role of the intestinal microbiota emerges as an essential feature in developing future therapeutic approaches in IBS (Johnsen et al., 2017).

A growing body of evidence indicates dysbiosis as a hallmark of IBS. Despite divergences between studies, there is good evidence that the microbiota is a -predominant factor in the IBS pathophysiology. In general, data suggest that there is a relative abundance of proinflammatory bacterial species including with Enterobacteriaceae, a corresponding reduction Lactobacillus and Bifidobacterium (Zhuang et al., 2017).

Probiotics may influence the IBS symptoms including abdominal pain, bloating, distension, flatulence and altered bowel movements (Dai et al., 2013). A 2015 meta-analysis of 24 human clinical trials concluded that probiotics, overall, were more beneficial than placebo in reducing pain and symptom severity scores (*Didari*, 2015).

Studies of selected probiotic species have suggested potential efficacy in several gastrointestinal illnesses, the best studied of which are the inflammatory bowel diseases (particularly pouchitis) (Singh et al., 2015). Therapeutic benefit has also been

suggested in several other disorders, including antibiotic-related diarrhea, Clostridioides (formerly Clostridium) difficile toxininduced colitis, infectious diarrhea, hepatic encephalopathy, irritable bowel syndrome, and allergy (Parker et al., 2018).

We try in current study to evaluate the role of probiotics in the improvement of irritable bowel syndrome symptoms.

AIM OF THE WORK

The aim of the current study is to evaluate the role of probiotics in the:

- Improvement of IBS symptoms via Irritable Bowel Syndrome Symptom Severity Scale (IBS-SSSS) (Arabic version licensed by Rome Foundation).
- Improvement of quality of life via Irritable Bowel Syndrome Quality of Life survey (IBS-QOL) (Arabic version licensed by Rome Foundation).

Chapter 1

IRRITABLE BOWEL SYNDROME "IBS"

Introduction:

BS is a functional bowel disorder and one of the most commonly diagnosed gastrointestinal illnesses. It is a symptom-based condition characterized by abdominal pain or discomfort, with altered bowel habits, in the absence of any other disease to cause these sorts of symptoms (*Ford et al.*, 2014c).

The first description of the condition was in 1820 while the current term "irritable bowel syndrome" came into use in 1944 (*Tamparo*, *2011*).

IBS was first documented more than 100 years ago. A functional bowel disorder is defined as changes in intestinal motility, intestinal nerve sensitivity, and the way the brain controls the normal function of the gut (*Occhipinti and Smith*, 2012).

The term 'irritable colon syndrome' (subsequently changed to irritable bowel syndrome) is attributed to Walter C. Alvarez in 1915. He considered factors such as differences in rhythm and irritability to share in altering the gradient of forces through the intestinal tract (*Alvarez*, 1915).

Alvarez continued to study the gradient of 'irritability' of small intestinal muscle, reflecting the frequency and amplitude of contraction. Mucous colitis or the syndrome of the sore bowel or the spastic colon are not accurate terms because the trouble is not limited to the colon (*Alvarez and Hosoi, 1929*).

Manning and colleagues (*Manning et al. 1978*) recommending the positive symptom-based diagnosis of IBS that coincided with the study held by Kruis and colleagues (*Kruis et al. 1984*), in which simple screening tests such as hemoglobin level and erythrocyte sedimentation rate were part of a screen for alarm features, consensus criteria were developed to codify the diagnosis based on symptom (*Manning et al., 1978*).

The Rome classification system was introduced by an international group of gastrointestinal experts at the University of Rome, Italy, and is used in daily practice for patients with gastrointestinal complaints (*Drossman*, 2016). The Rome IV criteria were introduced in May 2016 and are currently used to diagnose IBS by healthcare providers in daily practice today (*Simren et al.*, 2017).

IBS symptoms occur over a long time, often years. It has been classified into four main types depending on whether diarrhea is common, constipation is common, both are common, or neither occurs very often (IBS-D, IBS-C, IBS-M, or IBS-U respectively) (*Levy et al.*, 2014).