

Electrocardiogram (ECG) Augmentation and Classification Using Deep Learning Techniques

Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences

By

Abdelrahman Mohamed Shaker Youssef

Teaching Assistant at Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

Under Supervision of

Prof. Dr. Mohamed Fahmy Tolba

Professor of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University

Prof. Dr. Howida Abdel-Fattah Shedeed

Professor of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University

Dr. Manal Mohsen Tantawi

Assistant Professor at Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

> August – 2020 Cairo

Acknowledgment

First of all, all praises to Allah for giving me strength, patience, and knowledge in completing this thesis and for surrounding me with people who supported me so much.

Second, I pay my sincere gratitude to my supervisors; Prof. Dr. Mohamed Fahmy Tolba for his continuous support, patience, and guidance, Prof. Dr. Howida Shedeed for her encouragement and Dr. Manal Tantawi for the special supervision experience she gave me and for her valuable suggestions. This work would not have been possible without your efforts. I am deeply thankful.

Third, I would like to thank my mother for her infinite love and support. Her great efforts with pain, tears, and prayers have enabled me to reach the present position in my life. My father, I wish you were still here so I could make you proud and let you know how much I love you. I will never forget you and your wise words always in my mind. May Allah bless you.

I should not forget to acknowledge the world's best brother Ahmed, and my dear sisters Esraa and Eman for their continuous love, support, understanding, and good wishes whenever I needed them. Thank you for believing in me, without you it would have been much harder.

I want also to thank my friends, specially Hadeer and Eslam, who have helped me through the past time and kept on encouraging me to accomplish this work.

Last but not least, I would like to thank all my professors, colleagues, and my dear students who kept on encouraging me. Thank you for being in my life.

Abstract

Electrocardiograms (ECGs) play a vital role in the clinical diagnosis of heart diseases. An ECG record can be used to detect the abnormalities of the heart and to discover numerous arrhythmias. The screening of cardiac arrhythmias requires a detailed study of the ECG records by the cardiologists, this process is time-consuming and too difficult. Hence, the automation process of arrhythmias identification and ECG analysis is crucial in the medical field.

Medical datasets like the MIT-BIH arrhythmia dataset are often very limited and strongly imbalanced, which makes training the models—especially deep learning models—technically challenging, and the models will tend to be biased in favor of classes that contain a large number of samples.

This thesis proposes a novel data-augmentation technique using generative adversarial networks (GANs) to restore the balance of the dataset and improve the classification of ECG heartbeats. Furthermore, two deep learning approaches—an end-to-end approach and a two-stage hierarchical approach— in addition to multiple deep convolutional neural networks (CNNs) and Recurrent Neural Networks (RNNs) are proposed to eliminate hand-engineering features by combining feature extraction, feature reduction, and classification into a single learning method.

Results show that augmenting the original imbalanced dataset with generated heartbeats by using the proposed techniques more effectively improves the performance of ECG classification than using the same techniques trained only with the original dataset. Furthermore, we demonstrate that augmenting the heartbeats using GANs outperforms other common data augmentation techniques.

Our best results obtained with these techniques achieved overall accuracy above 98.0%, precision above 90.0%, specificity above 97.4%, and sensitivity above 97.7% after the dataset had been balanced using GANs, results that outperform several other ECG classification methods. The best results are achieved using inception-based deep CNN after solving the imbalance problem using GANs.

All experiments in this thesis are conducted on the MIT-BIH dataset, which is the most common arrhythmia dataset.

List of Publications

- 1) A. M. Shaker, M. Tantawi, H. A. Shedeed and M. F. Tolba, Generalization of Convolutional Neural Networks for ECG Classification Using Generative Adversarial Networks, in IEEE Access, vol. 8, pp. 35592-35605, 2020 (Impact Factor: 4.098).
- 2) A. M. Shaker, M. Tantawi, H. A. Shedeed and M. F. Tolba, Combination of Convolutional and Recurrent Neural Networks for Heartbeat Classification. Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). AICV 2020. Advances in Intelligent Systems and Computing, vol 1153. pp 362-37, Springer, Cham, , 2020.
- 3) A. M. Shaker, M. Tantawi, H. A. Shedeed and M. F. Tolba, Heartbeat Classification Using 1D Convolutional Neural Networks. Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019. AISI 2019. Advances in Intelligent Systems and Computing, vol 1058, pp 502-511, Springer, Cham, 2019.
- 4) A. M. Shaker, M. Tantawi, H. A. Shedeed and M. F. Tolba, Deep Convolutional Neural Networks for ECG Heartbeat Classification Using Two-stage Hierarchical Method. Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020. AISI 2020. Advances in Intelligent Systems and Computing, 2020 (Accepted).

Table of Contents

Acknowledg	gment	II
Abstract	·	Ш
List of Publi	cations	. V
Table of Co	ntents	VI
List of Figur	resV	'III'
List of Table	esV	Ш
List of Abbr	eviationsX	Ш
Chapter 1.	Introduction	2
1.1	Overview	2
1.2	Motivation	3
1.3	Objectives	4
1.4	Contributions	5
1.5	Thesis Organization	6
Chapter 2.	Medical Background	9
2.1	Heart Anatomy	9
2.2	Blood Flow	10
2.3	Heart Electrical Activity	12
2.4	Electrocardiogram (ECG)	13
2.5	Heart Rate Variability and RR Interval	15
2.6	Heart Diseases	16
Chapter 3.	Related Work	27
3.1	Overview	27
3.2	Related Studies	29
	3.2.1 Conventional approach studies	29
	3.2.2 Deep Learning approach studies	31
3.3	Comparative Analysis	33
Chapter 4.	Data Augmentation Using Generative Adversarial	
Networks (GANs)	38
4.1	Introduction to GANs	38
4.2	Description for the proposed GAN architecture	40
4.3	Synthetic heartbeat generation using the proposed GAN	42
Chapter 5.	Heartbeat Classification Using Conventional and Deep	
Learning T	echniques	47
5.1	Dataset	48
5.2	Preprocessing	50
	5.2.1 Filtering	
	5.2.2 QRS Detection	51
	5.2.3 Heartbeat segmentation	

5.3	Classification Using Conventional Method	55
	5.3.1 Feature Extraction	55
	5.3.2 Feature Reduction	56
	5.3.3 Classification using Support Vector Machines	57
5.4	Classification Using Deep Learning Methods	59
	5.4.1 Convolutional Neural Networks (CNNs)	59
	5.4.2 Long Short-Term Memory (LSTM)	
	5.4.3 Inception Network	
Chapter 6.	Experimental Results	
6.1	Experimental Results of the One-stage Classification Method	
		68
	6.1.1 Results Before Balancing the MIT-BIH Using GANs	s. 68
	6.1.2 Results After Balancing the MIT-BIH using GANs	75
6.2	Experimental Results of the Two-stage Classification Method	od
	6.2.1 Results of the Inception-based CNN Model Before	
	Balancing the Dataset Using GANs	81
	6.2.2 Results of the Inception-based CNN Model After	
	Balancing the Dataset using GANs	83
6.3	Analysis of the proposed approaches	
Chapter 7.	Conclusion and Future Work	
7.1	Conclusion.	
7.2	Future Work	
References		97

List of Figures

Figure 2.1 Anatomy of a human heart [24]	9
Figure 2.2 The blood flow cycle of the heart [25]	0
Figure 2.3 Heart Valves [27]	12
Figure 2.4 The electrical activity of the heart [28]	12
Figure 2.5 Normal heartbeat from an ECG record [29]	13
Figure 2.6 Interpretation of ECG heartbeats [30]	14
Figure 2.7 Heart rate variability [36]	15
Figure 2.8 Normal heartbeat for Lead 1 from the MIT-BIH dataset	17
Figure 2.9 Left Bundle Branch Block heartbeat for Lead 1 from the MIT-	
BIH dataset	17
Figure 2.10 Right Bundle Branch Block heartbeat for Lead 1 from the MIT	<u>-</u>
BIH dataset	18
Figure 2.11 Atrial Escape heartbeat for Lead 1 from the MIT-BIH dataset.	
	18
Figure 2.12 Nodal (Junctional) Escape heartbeat for Lead 1 from the MIT-	
BIH dataset	19
Figure 2.13 Nodal (Junctional) Escape heartbeat for Lead 1 from the MIT-	
BIH dataset	20
Figure 2.14 Aberrated Atrial Premature heartbeat for Lead 1 from the MIT	_
BIH dataset	20
Figure 2.15 Blocked Atrial Premature heartbeat for Lead 1 from the MIT-	
BIH dataset	21
Figure 2.16 Nodal(Junctional) Premature heartbeat for Lead 1 from the	
MIT-BIH dataset	21

Figure 2.17 Premature Ventricular Contraction heartbeat for Lead 1 from
the MIT-BIH dataset
Figure 2.18 Ventricular Escape heartbeat for Lead 1 from the MIT-BIH
dataset
Figure 2.19 Ventricular Flutter Wave heartbeat for Lead 1 from the MIT-
BIH dataset
Figure 2.20 Fusion of Ventricular and Normal heartbeat for Lead 1 from the
MIT-BIH dataset
Figure 2.21 Fusion of Paced and Normal heartbeat for Lead 1 from the
MIT-BIH dataset
Figure 2.22 Unclassifiable heartbeat for Lead 1 from the MIT-BIH dataset.
Figure 3.1 Block diagram for ECG heartbeat classification using
conventional approach
Figure 4.1 GAN training for the generator and discriminator networks 39
Figure 4.2 The proposed architecture of the GAN (a) the generator network
(b) the discriminator network
Figure 4.3 Real and synthesized heartbeat from Left Bundle Branch Block
(LBBB) Class
Figure 4.4 Real and synthesized heartbeat from Premature Ventricular
Contraction (PVC) Class
Figure 4.5 Real and synthesized heartbeat from Right Bundle Branch Block
(RBBB) Class
Figure 4.6 Real and synthesized heartbeat from Ventricular Escape (VE)
Class. 44
Figure 4.7 Real and synthesized heartbeat from Atrial Escape (AE) Class 44
Figure 5.1 The main steps of the proposed solution

Figure 5.2 ECG record a) before preprocessing b) after preprocessing	. 50
Figure 5.3 The steps of Pan Tompkins algorithm [60]	. 51
Figure 5.4 Example of Pan-Tompkins processing [60]	. 51
Figure 5.5 Detected R peak and its before/after duration	. 53
Figure 5.6 Results of the preprocessing stage (a) raw ECG record (b)	
filtered ECG record (c) segmented heartbeat.	. 54
Figure 5.7 DWT Decomposition [15]	. 56
Figure 5.8 PCA projection from 3D to 2D	. 57
Figure 5.9 Mapping the features into a higher-dimension space [68]	. 58
Figure 5.10 Constructing the hyperplane that maximizes the margin [68].	58
Figure 5.11 Repeating module in LSTM [55]	. 61
Figure 5.12 The forget gate in the LSTM [55]	. 62
Figure 5.13 Updating cell state in the LSTM [55]	. 63
Figure 5.14 The output gate in the LSTM [55]	. 63
Figure 5.15 Inception module [57].	. 64
Figure 6.1 Main steps for feature extraction process	. 68
Figure 6.2 One-stage strategy for SVM classifier	. 69
Figure 6.3 Overview of the proposed 1D-CNN architecture	. 70
Figure 6.4 Overview of the proposed CNN-LSTM architecture	. 72
Figure 6.5 Components of the proposed Inception module	. 73
Figure 6.6 Proposed architecture of the Inception-based CNN model	. 74
Figure 6.7 Proposed architecture of the two-stage hierarchical approach	. 81
Figure 6.8 Confusion matrices for the classes in two stage hierarchical	
approach (stage 2) (a) category N (b) category V (c) category S (d) category	ory
Q	. 86

List of Tables

Table 2.1 Mapping arrhythmia classes to the five main categories 16
Table 3.1 Comparison between the existing studies for ECG heartbeat
classification
Table 5.1 Training and testing percentages that utilized in the experiments.
49
Table 6.1 Results of the One-stage SVM before using GANs 69
Table 6.2 Results of the proposed architecture of 1D-CNN before using
GANs
Table 6.3 Results of the combination between CNN and LSTM in single
architecture before using GANs
Table 6.4 Results of the inception-based model before using GANs 75
Table 6.5 Results of the SVM before and after GAN using one-stage
classification method
Table 6.6 Confusion matrix of Inception-based CNN model of the one-stage
classification method
Table 6.7 Measurements of classifying 15 ECG classes before and after data
augmentation for the end-to-end approach. DS1 is the original set and DS2 is
the balanced set
Table 6.8 Comparison of the classification results in the end-to-end
approach using different techniques
Table 6.9 Measurements of classifying 15 ECG classes before augmentation
for the two-stage hierarchical approach (stage 1)
Table 6.10 Measurements of classifying 15 ECG classes before data
augmentation82

Table 6.11 Confusion matrix for the five main categories in the two-stage	
hierarchical approach (stage 1).	84
Table 6.12 Measurements of classifying 15 ECG classes before and after	
data augmentation for the two-stage hierarchical approach (stage 1). DS1 i	S
the original set and DS2 is the balanced set.	84
Table 6.13 Measurements of classifying 15 ECG classes before and after	
data augmentation for the two-stage hierarchical approach (stage 2). DS1 i	S
the original set, and DS2 is the balanced set.	87
Table 6.14 Comparison of our work with other results.	91

List of Abbreviations

Abbreviation Stands for

ADASYN **ADA**ptive **SYN**thetic

AE Atrial Escape

ANN Artificial Neural Networks

AP Aberrated Atrial **P**remature

APC Atrial Premature Contraction

BAP Blocked Atrial Premature

CAD Computer Aided Design

CNN Convolutional Neural Networks

CVD Cardiao Vascular Diseases

DCGAN Deep Convolutional Generative Adversarial Networks

DWT Discrete Wavelet Transform

ECG ElectroCardioGram

FN False Negative

FP False Positive

FPN Fusion of Paced and Normal

GAN Generative Adversarial Networks

HOS Higher Order Spectra

ICA Independent Component Analysis

LBBB Left Bundle Branch Block

LDA Linear Discriminant Analysis

LSTM Long Short-Term Memory

NE Nodal (Junctional) Escape

NLP Nature Language Processing

NOR NORmal

NP Nodal (Junctional) Premature

PCA Principal Component Analysis

PNN Probabilistic Neural Network

PVC Premature Ventricular Contraction

RBBB Right Bundle Branch Block

RNN Recurrent Neural Network

SMOTE Synthetic Minority Oversampling Technique

SNR Signal-to-Noise-Ratio

SVM Support Vector Machine

TN True Negative

UN UNclassifiable

VE Ventricular Escape

VF Ventricular Flutter Wave

VFN Fusion of Ventricular and Normal

WT Wavelet Transform

WHO World Health Organization

Chapter 1

Introduction