

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Role of Aspergillus fumigatus Sensitization in Patients with Asthma-COPD Overlap Compared to Asthma Patients

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

By

Mahetab Hany Elsaeed Ahmed Moustafa

(M.B., B.Ch)

Supervised by

Prof. Dr. Mohamed Abd El Rahman Elshayeb

Professor of Internal medicine, Allergy and immunology Ain Shams University

Dr. Sylvia Talaat Kamal Abd el Sayed

Lecturer of Internal medicine, Allergy and immunology Ain Shams University

Dr. Noha Othman Ahmed

Lecturer of Pulmonology Ain Shams University.

Faculty of Medicine Ain Shams University 2020

First and foremost, thanks to **Allah**; the most kind and merciful, providing me the strength and ability to complete this work.

No words can express my deep gratitude to **Prof. Dr. Mohamed Abd El Rahman Elshayeb**, for his guidance and encouragement for me in all stages of this work. He did not spare by his efforts, time or advices providing great interest in reading and revising the manuscript carefully. So I will not forget that and I will remain grateful to this forever.

I wish to express my deepest feeling of gratitude to **Dr.**Sylvia Talaat Kamal Abd el Sayed, for the great work she has done for this study to come out to light, I really appreciate her precious guidance, patience and unlimited faithful support from the very first day and throughout the way until the end.

My sincere thanks, deep appreciation and gratitude to **Dr.**Noha Othman Ahmed, for her sincere encouragement and cooperation throughout this work. I really appreciate her efforts to simplify things, and will never forget her kindness and beautiful soul.

Special thanks to my **family** and **friends** who have never left me and have been always there through the hard times and sleepless nights.

Finally, my appreciation and gratitude for all **participants** and **volunteers** who participated and helped in this study.

Mahetab Moustafa

Tist of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of literature	
Chapter (1): Bronchial Asthma	5
Chapter (2): Asthma- COPD overlap	36
Chapter (3): Fungal sensitization	55
Patients and methods	76
Results	92
Discussion	110
Summary	120
Conclusion and Recommendations	123
Reference	124
Arabic summary	

Abstract

Background: Distinguishing asthma from COPD can be difficult especially among old age and smokers. Some patients have common features of asthma and COPD.¹ (GINA, 2018). Hence, the definition of asthma COPD overlap (ACO) was developed. ACO is a considerable risk factor for healthcare utilization versus the general population, the asthma population and the COPD population.² (Minchul Kim et al., 2019). Fungal sensitization increase severity of asthma.

Aim of the study: To compare the prevalence of aspergillus fumigatus sensitization among ACO patients versus asthmatic patients and healthy normal control.

Patients and Methods: 90 individuals were included; 30 diagnosed as bronchial asthma (According to GINA 2018), 30 ACO patients and 30 healthy normal control. All are group matched to age and sex and selected from the allergy and chest outpatient clinics at Ain shams University hospitals. Total IgE, skin test for Aspergillus and spirometry were done to all participants.

Results: Aspergillus sensitization was more prevalent among ACO group compared to asthma group however, all control individuals were negative to aspergillus. FEV1 was significantly lower among ACO and asthma groups when compared to control. FEV1 increased significantly in the three groups after albuterol inhalation.

Conclusion: sensitization to Aspergillus was more among ACO patients compared to Asthma and control groups.

KEYWORDS: Asthma, Asthma-chronic obstructive pulmonary disease overlap (ACO), Fungal sensitization.

Tist of Abbreviations

Full term
Allergic Broncho Pulmonary Aspergillosis
Asthma- COPD Overlap
A Disintegrin and Metalloprotease Domain
Arabian Gulf region
Airway hyper responsiveness
Allergic rhinitis
Altered Smooth Muscles
Aspergillus
American Thoracic Society
Asthma associated to fungal sensitization
Bronchial Asthma
Complete Blood Count
Chronic obstructive pulmonary disease
Enzyme Linked Immunosorbent Assay
Ethylendiamine tetra acetic Acid
European Respiratory Society
Forced expiratory volume in first second
Figure
Forced vital capacity
Global initiative for asthma
Global Initiative for Chronic Obstructive Lung Disease
high mobility group box-1 protein
Inhaled corticosteroids
Immunoglobulin E
Interleukin

List of Abbreviations

IQRInterquartile range IU International unit KIT...... KIT proto-oncogene receptor tyrosine kinase LABALong acting beta₂ agonists LAMALong-acting muscarinic antagonist LTRALeukotrienes receptor antagonist LNN.....Lower Limit of Normal NADPH......Nicotinamide adenine dinucleotide phosphate NO Nitric oxide OCSOral corticosteroids PRRs..... Pattern Recognition Receptors PEFPeak expiratory flow PFTPulmonary function test SAFS severe asthma with fungal sensitization SABA.....Short acting beta agonists SD Standard deviation sIgESpecific immunoglobulin E SNPsSingle-nucleotide polymorphisms SPSS Statistical package for Social Science SPT Skin prick test TH2 high T helper 2 high cell TNF Tumor necrosis factor WHO World health organization

List of Tables

Table No.	Title	Dage No.
Table (1):	Assessment of Asthma severity	31
Table (2):	Criteria for diagnosis of asthma – COPD Overlap	
Table (3):	Interpretation of sIgE tests:	84
Table (4):	Comparison between the two studied groups accor	ding to
	demographic data	92
Table (5):	Comparison between the ACO and asthma p	patients
	according to smoking and its duration	92
Table (6):	Comparison between the ACO and Asthma	groups
	according to disease duration	94
Table (7):	Comparison between ACO and asthma groups aco	cording
	to presence of atopy	95
Table (8):	Comparison between the three studied groups accor	ding to
	serum eosinophils and total IgE	96
Table (9):	Comparison between the three studied groups according	ding to
	FEV1 % predicted and FEV1/FVC % before an	d after
	bronchodilator.	98
Table (10):	Comparison between the ACO and Asthma	•
	according to Skin prick test and specific Ig	
	Aspergillus positivity	
Table (11):	Comparison between the three studied groups according	-
	specific IgE for aspergillus	
Table (12):	Relation between Aspergillus positive and negativ	
m 11 (44)	patients according to different parameters	
Table (13):	Relation between Aspergillus positive and n	•
T 11 (1A)	Asthma patients according to different parameters.	
Table (14):	Relation between Aspergillus Positive and n	•
T-1-1- (15)	patients according to different parameters	
Table (15):	Univariate and multivariate analysis for the para	
Table (10):	affecting Asp	
Table (16):	Univariate and multivariate analysis for the para	
	affecting Asp in ACO patient	109

List of Figures

Figure No.	Title Page No.
Figure (1):	Assessment of symptoms control and future risk31
Figure (2):	Risk factors for poor asthma outcome32
Figure (3):	Treatment of Asthma
Figure (4):	Pathogenesis of ACO45
Figure (5):	Treatment of ACO54
Figure (6):	Pathogenesis and treatment of fungal sensitization57
Figure (7):	Positive SPT done at Allergy clinic in Ain Shams University Hospital
Figure (8):	Normal pulmonary function test curves88
Figure (9):	Abnormal pulmonary function test curves89
Figure (10):	Comparison between the three studied groups regarding serum eosinophil count (cells/uL)97
Figure (11):	Comparison between the three studied groups according to Total IgE (IU/ml)97
Figure (12):	Comparison between the three studied groups according to % of predicted FEV1 before and after bronchodilator99
Figure (13):	Comparison between the three studied groups according to FEV1/FVC before and after bronchodilator with high statistically significant low value in ACO
Figure (14):	Comparison between ACO and Asthma as regard patients with positive skin prick test, patients with Positive specific IgE for Aspergillus102
Figure (15):	Comparison between the three studied groups according to specific IgE for aspergillus with no significant difference between ACO and Asthma104

Introduction

Severe obstructive lung disease, which encompasses patients with asthma, chronic obstructive pulmonary disease (COPD) or features of both, remains a considerable global health problem and burden on healthcare resources. However, the clinical definitions of severe asthma and COPD do not reflect the heterogeneity within these diagnoses or the potential for overlap between them, which may lead to inappropriate treatment decisions. (*Martin et al., 2019*)

Most studies exclude patients with diagnoses of both asthma and COPD. Clinical definitions can influence clinical trial design and are both influenced by, and influence, regulatory indications and treatment recommendations. (*Martin et al.*, 2019)

Asthma is a heterogynous disease usually characterized by chronic airway inflammation. It presents clinically by symptoms of chest tightness, dyspnea, cough and wheeze that vary over time and in intensity together with variable expiratory airflow limitation. (*GINA*, 2018).

Chronic Obstructive Pulmonary Disease (COPD) is a common preventable and treatable disease that is, characterized by persistent respiratory symptoms and airflow limitation that is due to airway and/or alveolar abnormalities, which is caused by significant exposure to noxious particles or gases. (*GOLD*, 2019).

Distinguishing asthma from COPD can be difficult especially among old age and smokers. Some patients have common features of asthma and COPD. (GINA, 2018). Hence, the definition of asthma COPD overlap (ACO) was developed.

ACO is a considerable risk factor for healthcare utilization versus the general population, the asthma population and the COPD population. Consequently, future focus should be placed on the ACO population to identify ways to reduce their healthcare utilization. (*Minchul Kim et al.*, 2019).

Fungal sensitization is defined as the presence of immediate cutaneous hyper reactivity to fungal antigen(s) or an increase in specific IgE antibodies to a particular fungus. (Agarwal and Gupta, 2011).

Evidence has mounted that fungal sensitization is associated with a more severe asthma phenotype. (*Fairs et al., 2010*). Thus, an important identifiable subgroup of asthma, termed severe asthma with fungal sensitization