

The Role of Mean Platelet Volume as a Predictor of Mortality in Mechanically Ventilated Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Chest Diseases

By

Sarah Abdel Fattah Ibrahim M.B., B. Ch.

Supervisors

Prof. Dr. Mohamed Sherif Elbohy

Professor of Chest Diseases
Faculty of Medicine, Ain Shams University

Prof. Dr. Eman Ramzy

Professor of Chest Diseases
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to Allah, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Sherif**Elbohy, Professor of Chest Diseases and Tuberculosis, Faculty of Medicine, Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Eman Ramzy,** Assistant Professor of Chest Diseases and Tuberculosis, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Sarah Abdel Fattah

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	
List of Abbreviations	
Introduction	1 -
Aim of the Work	13
Review of Literature	
Physiology of Platelets	14
Mean Platelet Volume in Health and Disease	37
Mechanical Ventilation	43
Role of Mean Platelet Volume as A Predictor of in Ventilated Patients	-
Patients and Methods	63
Results	70
Discussion	88
Summary	98
Conclusion and Recommendations	102
References	103
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Platelet receptors recadhesion, and aggregation	
Table (2):	Platelet receptors in the amplit	fication in
Table (3):	Platelet receptors in the sta phase and in the negative reg platelet activation	ibilization ulation of
Table (4):	Comparison between the studi regarding demographic charact	ed groups
Table (5):	Comparison between the studi regarding special habits	
Table (6):	Comparison between the studi regarding comorbidities	72
Table (7):	Comparison between the studi regarding diagnosis	73
Table (8):	Distribution of the studied according to past history	_
Table (9):	Distribution of the studied according to signs	_
Table (10):	Comparison between the studi regarding vital signs	
Table (11):	Distribution of the studied according to x ray findings	patients
Table (12):	Distribution of the studied according to ECG findings	
Table (13):	Distribution of the studied according to ECHO findings	-
Table (14):	Comparison between the studi regarding CBC findings	ed groups
Table (15):	Comparison between the studi regarding MPV over time	ed groups

Tist of Tables cont...

Table No.	Title P	age No.
Table (16):	Comparison between the studied groregarding percent change of MPV of	ver
Table (17):	time	ups
Table (18):	Comparison between the studied groregarding ABG	ups
Table (19):	Multivariate analysis of fact associated with mortality amechanically ventilated patients	ong
Table (20):	Correlation between platelet count a MPV over time among the stude patients	and lied
Table (21):	Correlation between TLC and MPV of time among the studied patients	ver
Table (22):	Correlation between hemoglobin leand MPV over time among the studentients	evel lied
	Langering	

Tist of Figures

Fig. No.	Title	Page No.
Figure (1):	The three stages of platelet activa	tion16
Figure (2):	Platelet-activation mechanisms at the P2Y ₁₂ receptor	
Figure (3):	Mechanism of vascular changes derived microparticles (PMPs)	
Figure (4):	Pathway illustrating hemostasis	32
Figure (5):	Thromboxane biosynthesis pathwa	ay32
Figure (6):	After an injury in the vessel wall, a platelets begins to start	
Figure (7):	Diagram illustrating the role Willebrand factor (vWf) in platelet	
Figure (8):	Schematic representation of functions of platelets	
Figure (9):	Platelets	37
Figure (10):	Possible factors affecting platelet association with thrombo inflammation	sis and
Figure (11):	Combined bar chart showing between patient outcome and hypertension and diabetes	comorbid
Figure (12):	Combined bar chart showing between the studied groups diagnosis.	regarding
Figure (13):	Combined bar chart showing between patient outcome and his admission and MV	tory of ICU

Tist of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (14):	Combined bar chart showing between patient outcome and signs.	
Figure (15):	Combined bar chart showing between patient outcome and x ray	
Figure (16):	Combined bar chart showing between patient outcome and ECG f	
Figure (17):	Multiple line graph showing change over time among the studied groups	
Figure (18):	Combined bar chart showing percein MPV over time among the studied	•
Figure (19):	Simple bar chart showing co between the studied groups regarding	-

Tist of Abbreviations

Abb.	Full term
AA	Arachidonic acid
	Adenosine diphosphate
APACHE II	Acute Physiology and Chronic Health Evaluation II
ASV	Adaptive support ventilation
ATC	Automatic tube compensation
ATP	Adenosine 5'-triphosphate
<i>CPAP</i>	Continuous positive airway pressure
EDTA	Ethylenediaminetetraacetic acid
<i>EMPs</i>	Endothelial cell-derived microparticles
FiO ₂	Fraction of inspired oxygen
FITC	Fluorescein isothiocyanate
<i>GP</i>	Gly coprote in
<i>I: E.</i>	Inspiratory to expiratory
ICUs	Intensive care units
<i>ITP</i>	Immune thrombocytopenic purpura
<i>MAPK</i>	Mitogen-activated protein kinase
<i>MGDF</i>	Megakaryocyte growth and development factor
<i>MPC</i>	Mean platelet component
<i>MPV</i>	Mean Platelet Volume
NO	Nitric oxide
OCS	Open canalicular system
<i>PAV</i>	Proportional assist ventilation

Tist of Abbreviations (Cont...)

Abb.	Full term
PCT	.Plateletcrit
PCV	.Pressure-controlled ventilation
<i>PDW</i>	.Platelet distribution width
PE	.Phycoerythrin
PEEP	.Positive end-expiratory pressure
<i>PKC</i>	. $Protein\ kinase\ C$
PLT	.Platelet
PSV	Pressure Support Ventilation
<i>RA</i>	.Rheumatoid arthritis
<i>RDS</i>	Respiratory distress syndrome
<i>SIMV</i>	Synchronized intermittent mandatory ventilation
<i>SLE</i>	.Systemic lupus erythematosus
<i>TF</i>	.Tissue factor
<i>THPO</i>	.Thrombopoietin
TXA2	. Thromboxane A2
VC	.Volume-cycled
vWf	von Willebrand factor

Introduction

echanical ventilation is frequently used for life support in intensive care units (ICUs). When initial attempts of spontaneous breathing fail to achieve the goal of liberation from mechanical ventilation, clinicians must choose appropriate mode(s) of ventilatory support. Different ventilatory modes may be used during weaning from mechanical ventilation. The most common ones are: pressure support ventilation (PSV), synchronized intermittent mandatory ventilation (SIMV), continuous positive airway pressure (CPAP) and spontaneous breathing with a T-tube. But, there are other modes which have a role in weaning process such as automatic tube compensation (ATC), proportional assist ventilation (PAV), servocontrolled ventilation and adaptive support ventilation (ASV) (Krmpotic and Lobos, 2013).

Mean Platelet Volume (MPV) is a reflection of both prothrombotic proinflammatory and conditions, where thrombopoietin and numerous inflammatory cytokines regulate thrombopoiesis. MPV is higher when there is destruction of platelets. This may be seen as in inflammatory bowel disease, and in immune thrombocytopenic purpura (ITP), and in myeloproliferative diseases and Bernard-Soulier syndrome. It may also be related to pre-eclampsia, and recovery from transient hypoplasia (Liu et al., 2012).

Ye et al. (2018) investigated platelet volume indices and in-hospital mortality in children on mechanical ventilation. They revealed that risk factors for mortality in critically ill children may differ at different ages. Increased lactic acid levels appear to be the main risk factor for mortality in all critically ill children, and platelet count was found to be associated with mortality in patients aged>3 years only.

AIM OF THE WORK

To compare whether there is an association between MPV and mortality in mechanically ventilated patients as regard:

- What is the mechanical ventilation?
- What is the mean platelet volume (MPV)?
- Association between them.

Chapter 1

PHYSIOLOGY OF PLATELETS

platelets were discovered by Giulio Bizzozero in 1882, but for many decades the dynamic and multifunctional nature of platelets remained a field of interest only for biologists. Anucleate, discoid platelets are the smallest blood particles which unveil their dynamicity through their morphology (*Ribatti and Crivellato*, 2007).

Primarily they are associated with hemostasis, which is to initiate blood coagulation. Although very dynamic, they usually prefer to remain in inactive state and get activated only when a blood vessel is damaged. But hemostasis or blood coagulation is not the sole function of platelets; rather it is employed in several multifunctional attributes monitoring the homeostasis of the body. Its high sensitivity to different disease states eventually assigned it to be one of the most accessible markers. While keeping interactions with leukocytes and endothelial cells, it restores its behaviour as an important inflammatory marker (*Cerletti et al.*, 2012).

Platelet reactivity for different disease pathogenesis is widely dependent upon some biologically active markers like CD36, CD41, CD42a, CD42b, and CD61. These include some active surface receptors and platelet secretory products. Platelet

tends to alter the expression and signaling of these markers in different disease diagnosis and prognosis, providing a huge field to explore disease progression.

Primarily, platelet activity is associated with the initiation of coagulation cascades. Damage in blood vessel makes the subendothelial surface the primary target site of platelet action, where it establishes the hemostasis. Various proaggregatory stimuli also known as platelet agonists promote the action of platelet adhesion to the subendothelial surfaces. During this process, platelet changes its shape, releases its granule contents, and gradually forms aggregates by adhering with each other. Thus its primary activity remains associated with minimizing blood loss. However, as discussed earlier platelets are not only confined in regulating hemostasis and thrombosis, but they also play many pivotal roles in disease pathophysiology (*Vinik et al., 2001*).

Platelet interaction and cardiovascular disease progression remain unsolved riddle for Platelet an many years. hyperaggregation among the diabetic patients with CVD remains another striking area to explore. Platelet hyperactivity in various diseases provokes adverse effects in some cases, especially in coronary artery disease where hyperaggregation obstructs blood circulation. Expression of platelet markers can be well studied by ELISA or Western blot. However, till date flow cytometry is the best standardized method to study platelet function (Sharma and Berger, 2011).