

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Enhancing Indoor Localization System Based on Visible Light Communication

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

By

Marina Karmy Roufail Botros

Bachelor of Science in Electrical Engineering
(Electronics Engineering and Electrical Communications)

Faculty of Engineering, Modern Academy for Engineering and Technology, 2013

Supervised By

Prof. Dr. Abdelhalim Zekry

Professor, Department of Electronics and Communication Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt

Dr. Shaimaa ElSayed Ibrahim

Doctor, Department of Electronics and Communication Engineering,
Electronics and Communication Engineering Department, Modern Academy for Engineering
and Technology Cairo, Egypt.

Cairo - (2020)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electronics and Communications

Enhancing Indoor Localization System Based on Visible Light Communication

By

Marina Karmy Roufail Botros

Bachelor of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Faculty of Engineering, Modern Academy for Engineering and Technology, 2013

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Abdelhalim Zekry	
Electronics and Communications	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Wagdy Anis	
Electronics and Communications	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Halah Mohamed Abdelkader	
Electronics and Communications	
Faculty of Engineering at Shoubra, banha University	

Date: 19 October 2020

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Marina	Karmy Roufail Bo	tros
	Sign	ature

Date: 19 October 2020

Researcher Data

Name : Marina Karmy Roufail Botros

Date of birth : 01/08/1991

Place of birth : Egypt

Last academic degree : Bachelor of Science

Field of specialization : Electronic Engineering and Communication

Technology

University issued the degree : Modern Academy for Engineering and

Technology

Date of issued degree : July 2013

Current job : Instructor at Modern Academy

Abstract

Rapidly growing in the demands of mobile users leads to an expansion in the need for alternative innovations. So, wireless communications based on Visible Light (VL) have lately become popular to support Radio Frequency (RF) technology. This is because of its advantages such as its availability everywhere, high Bandwidth (BW) and security, privacy, free license, and does not interfere to RF communication. Visible Light Communication (VLC) depends on the VL spectrum for communication, which has wavelengths of 380 to 780nm. It utilizes Light Emitting Diode (LED) or Laser Diode (LD) as a Transmitter (Tx) and Photodetector (PD) or image sensor as a Receiver (Rx). VLC is used in different applications, one of the most important applications is indoor localization. One of the localization methods is a two-step positioning method in which the localization process is performed in two steps: 1) Estimating distances between multiple reference points and a target. 2) Determining the target position from these estimated distances. The required distance can be obtained based on several methods like Received Signal Strength Indication (RSSI), Time of Arrival (TOA), Time Difference of Arrival (TDOA), and Angle of Arrival (AOA) method. Also, several techniques are used to get the target position, including proximity detection, geometric, and fingerprinting method.

In this thesis, an RSSI/TDOA hybrid VLC indoor localization system in a room with dimensions $5 \times 5 \times 3$ m³ is proposed. Although RSSI localization algorithm is simple, but its performance is poor at areas with low lighting intensity. Using this technique, the localization Root Mean Square Error (RMSE) value will be 15.66 cm at a noisy environment with total noise variance mean of 2.5109x10⁻¹²W. This error can be decreased by controlling some Tx and Rx parameters such as the Tx semi-radiation angle, Rx noise BW, and estimation approach used. Another localization algorithm, TDOA, which does not use the received light intensity information, can be used to estimate the target position. Some parameters that can also enhance this approach performance such as distribution of lights and the used estimation approach are also considered in this work. Based on TDOA algorithm the localization RMSE value will be decreased to 7.21cm but at the expense of cost and time. Therefore, the proposed system solved this problem by combining the two techniques and estimating the target position based on RSSI only at places with acceptable received electrical power (between 6.53×10^{-9} : 9.91×10^{-9} w or equal to 1.04×10^{-8} W) while TDOA will be used at the other positions. Thus, the VLC indoor localization system RMSE will be decreased at the whole received area from 15.66cm (using RSSI technique only when the total noise variance mean is 2.5109x10⁻¹²W) to 6.68cm using this hybrid system.

Key words: AOA, BW, GPS, IR, LED, OWC, RFID, RMSE, RSSI, Rx, TDOA, TOA, Tx, VLC.

Acknowledgments

First and foremost, all praises and thanks to Allah who gave me the ability to write this thesis.

My deepest gratitude and appreciation to my thesis advisors **Prof. Dr. Abdelhalim Zekry** and **Dr. Shaimaa ElSayed Ibrahim** for their continuous guidance, encouragement and support throughout my work and in the writing of the dissertation.

I would like to specially thank **Prof. Dr. Abdelhalim Zekry** who gave me hope at times, when things looked difficult. I am truly indebted and thankful for his great efforts that helped accomplish this thesis to fruition.

I appreciate the efforts of **great parents** for providing me with unfailing support and continuously encourage me to study, research and write this thesis. This thesis would never be accomplished without their support and encouragement. Thank you.

Finally, I am deeply indebted to great people: my brother **Eng. Peter Karmy**, my dear husband **Dr. Mina Azer** for their encouragements. I hope that, they find in my current achievement a reward for their love and care.

October 2020

Table of Contents

Abstract	I
Acknowledgments	II
Table of Contents	III
List of Figures	VIII
List of Tables	XI
List of Publication	XII
List of Abbreviations	XIII
List of Symbols	XVI
CHAPTER 1: INTRODUCTION	1
1.1 Overview	1
1.2 Thesis Objective	2
1.3 Thesis Outlines	3
CHAPTER 2: WIRELESS COMMUNICATIONS FUNDA	MENTALS 4
2.1 Optical Wireless Communications (OWC)	4
2.1.1 Introduction	4
2.1.2 MotivationTowards OWC	5
2.1.3 OWC portions	6
2.1.3.1 Infrared (IR) Communications	7
2.1.4 Comparison between VLC and other wireless comm	unications (IR,
and RF)	7
2.1.5 OWC applications	10
2.1.5.1 Indoor OWC	10
2.1.5.1.1 LOS link	11

	2.1.5.1.2 NLOS link	
	2.1.5.1.3 Diffuse LOS link	11
	2.1.5.1.4 Tracked LOS link	12
	2.1.5.2 Outdoor OWC	12
	2.2 Wireless Communications based on Visible Light	13
	2.2.1 Evolution of VLC	13
	2.2.2 Benefits and Challenges	15
	2.2.3 Fundamentals of VLC	16
	2.2.4 Main Components of VLC	17
	2.2.4.1 Light Emitting Diodes (LEDs)	17
	2.2.4.1.1 Motivation	17
	2.2.4.1.2 White Light Emitting Diodes (WLEDs)	17
	2.2.4.1.3 Differences between LEDs and LDs	19
	2.2.4.2 Photodiodes (PDs)	20
	2.2.4.2.1 Requirements of VLC Detectors	20
	2.2.4.2.2 Comparison between pin PDs and APDs	21
	2.2.5 Applications of VLC	22
C	CHAPTER 3: VLC INDOOR LOCALIZATION SYSTEMS AND	
	ITERATURE REVIEW	23
	3.1 Introduction.	
	3.2 Localization Systems Metrics	23
	3.2.1 Localization Accuracy	
	3.2.2 Coverage Area	
	3.2.3 Capacity	
	3.2.4 Scalability	
	3.2.5 Robustness	24
	3.2.6 Cost	24

3.2.7 Complexity	25
3.2.8 Privacy and Security	25
3.3 Indoor Localization Systems	25
3.3.1 Computer Vision (CV) Techniques	25
3.3.2 Ultrasonic (US) Techniques	26
3.3.3 Infrared (IR) Techniques	26
3.3.4 Ultra Wide Band (UWB) Techniques	26
3.3.5 Radio Frequency Identification (RFID) Techniques	26
3.3.6 Wi-Fi Techniques	27
3.4 VLC Based Indoor Localization	
3.4.1 Motivation	
3.4.2 VLC Localization Principles	
3.4.2.1 Two-Step Positioning Approach	
3.4.2.1.1 Parameter Estimation (Distance Measurements)	20
Techniques	29
3.4.2.1.1.1 Received Signal Strength (RSSI) Technique	
3.4.2.1.1.2 Time of Arrival (TOA) Technique	29
3.4.2.1.1.3 Time Difference of Arrival (TDOA) Technique	29
3.4.2.1.1.4 Angle of Arrival (AOA)Technique	30
3.4.2.1.1.5 Hybrid Methods	31
3.4.2.1.1.6 Comments about the Distance Measurement	
Techniques	31
3.4.2.1.2 Position Estimation Techniques	31
3.4.2.1.2.1 Proximity Method	32
3.4.2.1.2.2 Geometric Method	33
3.4.2.1.2.3 Fingerprinting Method	33
3.4.2.1.2.4 Position Estimation techniques Conclusions	
3.4.2.2 Direct Positioning Approach	
3.5 Literature Review	34

3.5.1 Different VLC Localization Systems Review	35
3.5.2 Methods for Enhancing VLC based indoor Localization	
Accuracy	36
CHAPTER 4: PROPOSED SYSTEM ARCHITECTURE AND	
MATHEMATICAL MODEL	39
4.1 Model of LOS VLC Based Channel	39
4.2 Proposed System Design and Analysis	41
4.2.1Traditiona RSSI Technique	42
4.2.2 Traditiona TDOA Technique	45
4.2.3 Proposed System Architecture	51
4.2.3.1 Proposed System Transmitter (Tx)	51
4.2.3.2 Proposed System Receiver (Rx)	52
4.2.4 Proposed System Localization Process	60
4.2.4.1 Distance Estimation Process	60
4.2.4.1.1 Based on RSSI Technique	61
4.2.4.1.2 Based on TDOA Technique	62
4.2.4.2 Position Estimation Algorithm	68
4.2.4.2.1 Based on Linear Least Square Approach (LLS)	68
4.2.4.2.2 Based on Non-Linear Least Square Approach (NLS)	69
4.3 Noise modeling	69
CHAPTER 5: SIMULATION RESULTS AND PERFORMANCE	
EVALUATION	
5.1 Introduction	72
5.2 Room Topology and Parameters	73
5.3 Power Distribution and Signal to Noise Ratio (SNR) Distribution	74
5.3.1 Received I OS Optical Power	7/

5.3.2 LOS SNR	75
5.4 RSSI Positioning Error	77
5.5 Parameters Affect the RSSI Performance	78
5.5.1 Effect of Transmitter semi-angle $(\phi_{1/2})$ on RSSI Positioning	
Error	78
5.5.2 Effect of Receiver noise BW (B) on RSSI Positioning	
Error	79
5.5.3 Effect of Estimation approach used on RSSI Positioning Error	80
5.6 TDOA Localization Error	81
5.7 Parameters Affect the TDOA Performance	82
5.7.1 Effect of Sources Distribution Used on TDOA Localization	
Error	82
5.7.2 Effect of Estimation Approach Used on TDOA Localization	
Error	84
5.8 Localization Error Based on RSSI / TDOA Hybrid Technique	85
CHADTED 6. CONCLUSION AND ELITIDE WODES	QQ
CHAPTER 6: CONCLUSION AND FUTURE WORKS	
6.1 Introduction	
6.2 Conclusion	88
6.3 Future Works	90
Deferences	01

List of Figures

Fig 2.1	Optical band as a part of the EM spectrum [13]
Fig 2.2	IM/DD concept in OWC [13]5
Fig 2.3	Prediction of the mobile data traffic per month [15]
Fig 2.4	Classification of OWC Systems [37]10
Fig 2.5	Link classifications: (a) directed LOS, (b) non directed LOS, (c)
diffuse, an	nd (d) tracked link [38]11
Fig 2.6	Visible light part of the electromagnetic spectrum [38]13
Fig 2.7	Evolution towards VLC [43]14
Fig 2.8	VLC key features [38]16
Fig 2.9	Typical phosphor LED properties, (a) frequency response and (b)
emission	spectrum [55]18
Fig 2.10	Typical RGB LED properties, (a) frequency response per color and
(b) emissi	on spectrum [55]
Fig 3.1	Postioning techniques classification for VLP systems [57]28
Fig 3.2	TOA and TDOA measurements30
Fig 3.3	AOA of the signal [57]31
Fig 3.4	Position estimation methods [57]
Fig 4.1	LOS optical channel model
Fig 4.2	LED lambertian radiation pattern [90]
Fig 4.3	Simple block diagram representation for traditional RSSI technique
Fig 4.4	Room configuration [1]44
Fig 4.5	LOS optical received power [1]44
Fig 4.6	Distribution of a traditional RSSI localization error [1]45
Fig 4.7	Traditional TDOA based system block diagram [78]46
Fig 4.8	Room configuration used in [1]48
Fig 4.9	Received signal at location (3, 3) in a) time domain, b) frequency
domain [7	78]49