

Comparative study between Post-Transplant Cyclophosphamide vs Methotrexate in HLA-Matched related donor in hematological malignancies as regard Acute Graft Versus Host Disease or CytomegaloVirus reactivation

Thesis

Submitted for Partial Fulfillment of Master Degree in **Clinical Hematology**

$\Im \gamma$ Ahmed Mohammed Elhosainy (M.B.B.Ch)

Under Supervision of

Prof. Dr: Mohamed Mahmoud Moussa

Professor of Internal Medicine & Hematology Faculty of Medicine, Ain Shams University

General. Dr: Essam Ali AbdElmohsen

Head of Hematology Department Maadi Armed Forces Medical Compound Consultant of Hematology, Military Medical Academy

Dr: Haydi Sayed Mohamed

Lecturer of Internal Medicine & Hematology Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my sincere appreciation and gratitude to **Prof. Dr. Mohamed Mahmoud Moussa,** Professor of Internal Medicine and Clinical Hematolog, faculty of medicine, Ain Shams University, for his supervision.

I would like also to express my sincere appreciation and gratitude to General Dr. Essam Ali AbdElmohsen, Head of Hematology Department, Maadi Armed Forces Medical Compound, Consultant of Hematology, Military Medical Academy, for his continuous directions and support throughout the whole work.

Really I can hardly find the words to express my gratitude to **Dr. Haidy Said Mohammed,** Lecturer of Internal Medicine & Hematology, Faculty of Medicine, Ain Shams University for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. I really appreciate her patience and support.

I would like also to express my sincere appreciation and gratitude to my senior and close friend Colonel Dr. George Bahig Soryal, Dr. Mai Samir AbdElmawgod.

Last but not least, I dedicate this work to my family, especially my lovely wife **Doaa** whom without her sincere emotional support, pushing me forward this work would not have ever been completed.

Ahmed Mohammed Elhosainy

Tist of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	8
List of Figures	10
Introduction	1 -
Aim of the Work	14
Review of Literature	
■ Hematopoietic Stem Cell Transplantation	15
■ Post Transplant Cyclophosphamide	46
Patients and Methods	66
Results	73
Discussion	95
Summary and Conclusion	104
Recommendations	105
References	106
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
aGvHD	. Acute graft-versus-host disease
	. Acquired immune-deficiency syndrome
	. Acute myeloid leukemia
	. Antigen-presenting cells
	. Anti-thymocyte globulin
	. B-cell lymph proliferative disease
BM	,
BMI	. Body mass index
BU	
	. Cell adhesion molecules
CCI	. Charlson Comorbidity Index
	. Cluster of Differentiation
	. Chronic graft-versus-host disease
	. Chronic lymphocytic leukemia
	. Chronic myelocytic leukemia
<i>CMV</i>	. Cytomegalovirus
<i>CRP</i>	. C-reactive protein
CSA	. Cyclosporine A
CT	. Computerized tomography
CTLs	. Cytotoxic T lymphocytes
DMSO	. Dimethyl sulfoxide
<i>EBV</i>	. Epstein–Barr virus
<i>ECOG.</i>	. Eastern Cooperative Oncology Group
FHCRC	. Fred Hutchinson Cancer Research Center
<i>G-CSF</i>	. Granulocyte colony-stimulating factor
<i>GvHD</i>	. Graft-versus-host disease
HL	. Hodgkin lymphoma
HLA	. Human leucocyte antigen

Tist of Abbreviations cont...

Abb.	Full term
HSCs	Hematopoietic stem cells
	Hematopoietic cell transplantation
	Hematopoietic stem cells Transplantation
	Hematopoietic cell transplantation-specific comorbidity index
Ig	Immunoglobulin
<i>IL</i>	Interleukin
<i>IPA</i>	Invasive pulmonary aspergillosis
KPS	Karnofsky Performance Score
<i>MDACC</i>	MD Anderson Cancer Center
<i>MDS</i>	Myelodysplasia
<i>MDS</i>	Myelodysplastic syndrome
<i>MM</i>	
<i>MSC</i>	Mesenchymal stromal cells
<i>MTX</i>	Methotrexate
NHL	Non Hodgkin lymphoma
NK	Natural killer
<i>NMA</i>	Non-myeloablative
NRM	Non-relapse mortality
OS	Overall survival
PBSC	Peripheral blood stem cells
PCP	Pneumocystis carinii pneumonia
	Polymerase chain reaction
PFTs	Pulmonary function tests
PTLD	Post-transplantation lymphoprofilerative disorder
RBCs	Red blood cells
RCTs	$Randomized\ controlled\ trials$

Tist of Abbreviations cont...

Abb.	Full term
<i>RIC</i>	. Reduced-intensity conditioning
<i>RSV</i>	. Respiratory syncitial virus
SDF1	. Stromal-derived factor 1
SF	. Serum ferritin
TBI	. Total body irradiation
<i>TCD</i>	. T- cell depletion
TRM	. Treatment-related mortality
UCB	. Umbilical UCB
US	. United States
VCAM-1	. Vascular cell adhesion molecule-1
VOD	. Veno-occlusive disease
VZV	. Varicella zoster virus

List of Tables

Table No.	Title Pag	e No.		
Table (1):	Common indications for HSCT	17		
Table (2):	Comparison of bone marrow, peripheral			
14610 (2).	blood stem cell and cord blood			
Table (3):	Current classification of acute and chronic			
_ = = = = = = = = = = = = = = = = = = =	GvHD			
Table (4):	Clinical manifestations of acute GvHD			
Table (5):	Histopathological findings in acute GvHD			
Table (6):	Staging of acute graft-versus-host disease			
Table (7):	Summary of the published studies using			
	post-transplant cyclophosphamide for	c		
	prophylaxis of GVHD	54		
Table (8):	Comparison between group I and group I	I		
	regarding age and sex of the studied cases	73		
Table (9):	Comparison between both groups as	3		
	regard patient diagnosis	76		
Table (10):	CMV status of donors and recepients in			
	group I	78		
Table (11):	CMV status of donors and recepients in			
	group II by ELISA Test for CMV Ig G			
Table (12):	Comparison between both groups as			
	regard neutrophil engraftment			
Table (13):	Comparison between both groups as			
	regard acute GVHD and chronic GVHD			
Table (14):	Comparison between both groups as			
	regard CMV reactivation			
Table (15):	Comparison between both groups as			
	regard relapse, mortality and non relapse			
	mortality	86		

Tist of Tables cont...

Table No.	Title Pag	ge No.
Table (16):	Comparison between both groups a regard overall survival	
Table (17):	Comparison between both groups a regard disease free survival	
Table (18):	Relation of overall survival (months) wit reactivation CMV, GVHD ar engraftment in group I	nd
Table (19):	Relation of disease free survival (month with reactivation CMV and GVHD is group I	s) in
Table (20):	Relation of overall survival (months) wit reactivation CMV, GVHD are engraftment in group II	th nd
Table (21):	0 0 1	s) D

List of Figures

Fig. No.	Title	Page No.		
Figure (1):	Donor selection algorithm			
Figure (2):	Immune cells and cytokines of host			
	donor in GvHD pathophysiology and			
	activity			
Figure (3):	Age group differences in both groups.			
Figure (4):	Sex differences in both groups	75		
Figure (5):	Patint classification in both group	os as		
	regard diagnosis.	77		
Figure (6):	Engraftment results in both groups	80		
Figure (7):	Day of engraftment of both groups	80		
Figure (8):	Comparison between both group	s as		
	regard platlet recovery	81		
Figure (9):	Comparison between both group	s as		
	regard chronic GVHD	83		
Figure (10):	Comparison between both group	s as		
	regard acute GVHD	84		
Figure (11):	Comparison between both group	s as		
	regard acute GVHD grading85			
Figure (12):	Comparison between both group	s as		
	regard CMV reactivation	85		
Figure (13):	Comparison between both group	s as		
	regard relapse rate, mortality and	non		
	relapse mortality	87		
Figure (14):	Comparison between both group	s as		
	regard overall survival			
Figure (15):	Comparison between both group			
	regard disease free survival			

Tist of Figures cont...

Fig. No.		Title			Page	No.
Figure (16):	Relation	between	chronic	GVHD	and	
overall survival in Group 1					91	
Figure (17):			O			
survival in group 1					91	
Figure (18):	Relation	between	chronic	GVHD	and	
disease free survival in group 1				92		

Introduction

raft-versus-host disease (GVHD) is a major toxicity of allogeneic hematopoietic stem cell transplantation (HSCT). It is a clinicopathologic syndrome of T cell-mediated alloreactivity that leads to significant morbidity and mortality (*Filipovich et al.*, 2005). On the other hand, removal of T cells that are responsible for GVHD has been associated with a higher rate of graft failure and relapse (*Bashey et al.*, 2017).

Many pharmacologic immunosuppressive regimens were introduced to reduce GvHD. The combination of calcineurin inhibitors (CNIs), such as tacrolimus or cyclosporine, with methotrexate remains the most common regimen used for GvHD prophylaxis (*Kanakry et al.*, 2014).

Although CNIs inhibit acute GVHD, they are not as effective in reducing the incidence of chronic GVHD, even if administered for 24 months after transplantation. Moreover, CNIs may impair immune reconstitution by inhibiting T-cell development and increasing the risk of disease relapse. Thus, patients with hematologic malignancies undergoing allo-BMT might benefit from GVHD prophylaxis that would minimize the use of CNIs, prevent GVHD, and retain a graft-versus-tumor effect (*Baron et al.*, 2014).

Cyclophosphamide was one of the first agents shown to be effective in controlling acute GVHD in animal models. Subsequent mouse studies demonstrated that tolerance to minor histocompatibility antigens could be induced if Cyclophosphamide was given in a high dose 2 to 3 days after alloantigen exposure (*Zhao et al.*, 2008).

Variety of clinical trials using high-dose post-transplantation Cyclophosphamide (PTCy) in HLA-matched and haplo-identical donors, mostly in the adult population shown to be effective as well (*Kanakry et al.*, 2014; O'Donnell et al., 2014).

PTCy targets alloreactive donor T cells that are highly proliferative early after BMT, thus minimizing the risk of severe GvHD, while still enabling survival of resting memory T cells that can offer protection against infection and against tumor relapse (*Luznik et al.*, 2016).

Cyclophosphamide can safely be administered in high doses after alloBMT because of its favorable safety profile, including lack of toxicity to primitive hematopoietic stem cells (*Peccatori et al.*, 2014).

These promising clinical trials using PTCy have demonstrated the safety and feasibility of PTCy as sole of GvHD prophylaxis after myeloablative HLA-matched T cell replete BMT in adults, with rates of GvHD similar to that of HLA-matched BMT with conventional immunosuppression, including a CNI and Methotrexate(*Cieri et al.*, *2015*).

AIM OF THE WORK

The aim of the work is to assess safety and efficacy of using Cyclophosphamide as GvHD prophylaxis in allogeneic stem cell transplant and its effect on acute GvHD and CMV reactivation in comparison to CNIs with Methotrexate.

Chapter T

HEMATOPOIETIC STEM CELL TRANSPLANTATION

ematopoietic stem cell transplant (HSCT) was started more than half a century ago; it is a standard treatment for many hematological malignancies. It is now established as a standard therapeutic modality for a variety of malignant and non-malignant diseases, it has evolved since from experimental bone marrow transplantation for rare cases with refractory acute leukemia, combined immune deficiency, or aplastic anemia to standard of care for patients with many congenital or acquired severe disorders of the hematopoietic system (*Gratwohl et al.*, 2013).

It is noted that the first successful allogeneic HSCT was done with bone marrow (BM) as the source of hematopoietic stem cells in 1968. In the subsequent 2 decades only bone marrow was used as the source of stem cells for transplantation. In the 1960s, experiments have shown that peripheral blood contains a small number of stem cells, which can be enriched by pre-treatment with certain chemotherapeutic drugs and hematopoietic growth factors. Therefore mobilized peripheral blood stem cells (PBSC) became another stem cell source for HSCT and PBSC has been increasingly used as it has certain advantages compared with BM. In 1978, cord blood (CB) was found to be a rich source of stem cells and was later