USE OF TISSUE CULTURE IN THE PRODUCTION OF SECONDARY METABOLITES FROM CHICORY (Cichorium intybus) PLANT

By

MARWA OTHMAN MOHAMED SAYED

B.Sc. Agric. Sc. (Plant production), Faculty of Agric., Ain Shams University, 2014

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(Ornamental, Medicinal and Aromatic Plants)

Department of Horticulture
Faculty of Agriculture
Ain Shams University

Approval Sheet

USE OF TISSUE CULTURE IN THE PRODUCTION OF SECONDARY METABOLITES FROM CHICORY (Cichorium intybus) PLANT

By

MARWA OTHMAN MOHAMED SAYED

B.Sc. Agric. Sc. (Plant production), Faculty of Agric., Ain Shams University, 2014

This Thesis for M.Sc. Degree has been approved by
Dr. Hekmat Yehia Ahmed Massoud
Professor Emeritus of Ornamental and Medicinal Plants, Faculty o
Agriculture, Mansoura University.
Dr. Asmaa Mohammed Mohammed Abd El-Gyed
Associate Professor of Ornamental, Medicinal and Aromatic Plants
Faculty of Agriculture, Ain Shams University.
Dr. Abdelaziz Mohamed Hosni
Professor Emeritus of Ornamental, Medicinal and Aromatic Plants
Faculty of Agriculture, Ain Shams University.
Dr. Laila Mohamed Helmi
Professor Emeritus of Ornamental, Medicinal and Aromatic Plants
Faculty of Agriculture, Ain Shams University.

Date of Examination: 22/12/2019

USE OF TISSUE CULTURE IN THE PRODUCTION OF SECONDARY METABOLITES FROM CHICORY (Cichorium intybus) PLANT

By

MARWA OTHMAN MOHAMED SAYED

B.Sc. Agric. Sc. (Plant production), Faculty of Agric., Ain Shams University, 2014

Under the Supervision of

Dr. Laila Mohamed Helmi

Professor Emeritus of Ornamental, Medicinal and Aromatic Plants, Horticulture Department, Faculty of Agriculture, Ain Shams University. (Principal Supervisor)

Dr. Abdelaziz Mohamed Hosni

Professor Emeritus of Ornamental, Medicinal and Aromatic Plants, Horticulture Department, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Marwa Othman Mohamed Sayed: Use of Tissue Culture in the Production of Secondary Metabolites from Chicory (*Cichorium intybus*) Plant. Unpublished M.Sc. Thesis, Horticulture Department, Faculty of Agriculture, Ain Shams University, 2020.

All experiments of this research study were carried out in the plant tissue culture laboratory of the Agricultural Botany Department, Faculty of Agriculture, Ain Shams University, Shoubra El-kheima, Cairo, Egypt. Experiments on chicory plant were executed for the duration of two consecutive years 2017 and 2018. Chicory (*Cichorium intybus* L.), which belongs to Asteraceae family, is considered as an important medicinal plant due to the presence inside it of many bioactive substances such flavonoids, phenolic compounds, alkaloids, steroids, terpenoids, coumarines, cichoriin, esculetin, inulin, sesquiterpene lactones, chicoric acid, caffeic acid and some vitamins.

In this research, seed sterilization process aseptically was accomplished using three sterilizers namely mercuric chloride, Clorox and hydrogen peroxide in various concentrations and periods (0.1 % for 3-5 min., 10 % for 10 min and 12 % for 20 min), respectively. Clorox showed the best antiseptic effect with the lowest contamination percentages (2.5 % and 3.8 %). *In vitro* germination of chicory seeds used as initial explants were carried out using agar and half-strength Murashige and Skoog (MS) media to grow aseptic seedlings to provide for leaf explants from which callus is induced. Half-strength MS medium was the best in terms of the seedling growth rate (leaf number, width and length).

For friable callus induction, chicory leaf explants were abaxially inoculated on the surface of full-strength MS medium supplemented with different combinations of five plant growth regulators; NAA at 0.5-2.0-3.0-5.0 mg/l, IBA at 0.5-2.0 mg/l, 2,4-D at 3.0-5.0 mg/l, BA at 0.4-0.5-0.75-1.5-2.0 mg/l and IAA at 0.5-2.0 mg/l. Only MS medium

supplemented with NAA alone or combined with IBA produced the desirable friable callus and the optimum callus fresh weights were obtained with NAA at 3 mg/l plus IBA at 2 mg/l under total dark incubation condition.

Regarding callus content of phenolics, flavonoids and guaiacol peroxidase activity enzyme, NAA at 2 mg/l was the superior treatment. Meanwhile, reducing sugars, total free amino acids and polyphenol oxidase activity were increased with NAA at 5 mg/l plus IBA at 2 mg/l treatment. Moreover, the superior treatment for total soluble protein content and phenylalanine ammonia lyase activity was NAA at 3 mg/l plus IBA at 2 mg/l under total dark condition.

Keywords: *Cichorium intybus* L., Chicory, Asteraceae, Naphthalene acetic acid, NAA, Indole -3 -butyric acid, IBA, Auxin, Callus, *In vitro* culture, MS medium, Phenolic compounds, Flavonoids, Amino acids, Proteins, Reducing sugars, Enzyme activity, PAL, POD, PPO.

ACKNOWLEDGEMENT

First, praise be to **Allah**, the Lord of the Worlds, and may blessings and peace of **Allah** be upon the most honored of messengers our prophet **Muhammad** and upon all his family members and companions. Also, thanks and gratitude are extended to **Allah**, who guided me to his path and assisted me in all my life.

I would like to express my deep gratitude and everlasting thanks to Dr. **Abdelaziz Mohamed Hosni**, Prof. Emeritus of ornamental, medicinal and aromatic plants, Dept. of Horticulture, Fac. of Agriculture, Ain Shams Univ., who proposed the work plan of this study and provided me encouragement, guidance and continuous support from the start to the final step of my M.Sc. study and in writing and reviewing the manuscript. I would also like to thank him for motivation, which has enabled the production of this thesis. All words and feeling are not enough to express how grateful I am to him.

I wish to express my appreciation and gratitude to Dr. Laila Mohamed Helmi, Prof. Emeritus of ornamental, medicinal and aromatic plants, Dept. of Horticulture, Fac. of Agriculture, Ain Shams Univ., for her constructive criticism and helpful suggestions.

I would like to express my sincere appreciation to Mr. Mohamed Mahmoud Aboul Fotouh Mesalhi, assistant lecturer of agricultural biochemistry, Dept. of Agricultural Biochemistry, Mr. Anas Mohammed Mahmoud Mohammed Salama, assistant lecturer of soil fertility and plant nutrition, Dept. of Soil Sciences and Mr. Ali Mohammed Mohammed Abd-Elkader, assistant lecturer of plant physiology, Dept. of Agricultural Botany, Fac. of Agriculture, Ain Shams Univ., each of which provided me with the necessary support to complete the chemical and statistical analyses.

Also, I would never forget Dr. Sabry Mousa Soliman Youssef Mehana, Prof. of vegetable crops, Dept. of Horticulture, Fac. of

Agriculture, Ain Shams Univ., for his help, guidance, advice and inspiring words when needed.

I would like to express my gratitude to all the members of the plant tissue culture lab., Agricultural Botany Department, Faculty of Agriculture, Ain Shams University for providing required facilities and instruments for the *in vitro* experiments.

Last but not least, my deepest gratitude is offered to my parents and my grandmother for all the care, kindness, encouragement and support provided by them. This work could not have been concluded with success without their patience and understanding.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Description and Classification of Chicory	3
2.2. Applications/Uses of Chicory	5
2.2.1. Chicory as a medicinal herb	5
2.2.2. Chicory as a vegetable plant	5
2.2.3. Chicory as a coffee plant	6
2.2.4. Chicory as a forage crop	6
2.3. Plant Tissue Culture	7
2.3.1. General brief history	7
2.3.2. Tissue culture and production of plant metabolites	8
2.4. Specific Chicory Plant Tissue Culture Procedures	9
2.4.1. Sterilization of initial seed explants	9
2.4.2. Seed germination	10
2.4.3. Explant for callus induction	11
2.4.4. Effect of illumination conditions during incubation on callus	12
induction	
2.4.5. Effect of growth regulator types and their concentrations	12
2.4.5.1. On callus formation	12
2.4.5.2. On callus nature	15
2.4.5.3. On phytochemicals extracted from callus	18
3. MATERIALS AND METHODS	21
3.1. Place and Time Duration	21
3.2. Plant Material	21
3.3. In Vitro Culture Experiments	21
3.3.1. Surface sterilization of initial explants	21
3.3.2. Seed germination	22
3.3.3. Preparation of final explants	22
3.3.4. Culture medium for callus induction	22
3.3.5. Callus induction	22
3.4. Data Collected	23

	Page
3.4.1. Growth parameters	23
3.4.2. Chemical analysis	25
3.5. Experimental Design and Statistical Analysis	25
4. RESULTS	27
4.1. Effect of Sterilization Substances on Initial Seed Explants	27
4.2. Effect of Medium Type and Light Conditions	28
4.2.1. On seed germination	28
4.2.2. On seedling growth	28
4.3. Effect of Growth Regulators	29
4.3.1. On leaf explant response	30
4.3.2. On nature of callus formed on leaf explants	30
4.3.3. On friable callus quantity	32
4.3.3.1. Fresh weight	32
4.3.3.2. Dry weight	33
4.3.4. On phytochemicals extracted from friable callus	34
4.3.4.1. Total phenolic compounds	34
4.3.4.2. Total flavonoids	35
4.3.4.3. Free amino acids	36
4.3.4.4. Total soluble protein (TSP)	37
4.3.4.5. Reducing sugars	39
4.3.4.6. Polyphenol oxidase (PPO) enzyme activity	40
4.3.4.7. Phenylalanine ammonia lyase (PAL) enzyme activity	41
4.3.4.8. Guaiacol peroxidase (G-POD) enzyme activity	42
5. DISCUSSION	43
5.1. General	43
5.2. Specifics	43
5.3. Suggestions for Future Research Work	47
6. SUMMARY OF RESULTS	49
7. REFERENCES	50
8. APPENDICES	61
ARABIC SUMMARY	

LIST OF TABLES

Гable		Page
No.		
1	Summary of <i>in vitro</i> callus induction treatments applied to chicory leaf explants and their abbreviated codes.	23
2	Effect of different sterilization substances on contamination and survival percentages of chicory (<i>Cichorium intybus</i> L.) seeds, as initial explants for two years (2017 and 2018).	27
3	Effect of two media types on <i>in vitro</i> seeds germination of chicory (<i>Cichorium intybus</i> L.) under light and dark conditions for two years (2017 and 2018).	28
4	Effect of two media types on <i>in vitro</i> seedlings growth of chicory (<i>Cichorium intybus</i> L.) after seed germination under light and dark conditions for two years (2017 and 2018).	29
5	Simplified illustration on chicory leaf explants' response as affected by growth regulator treatments (to produce callus or to regenerate into clumps of stems plus leaves or to develop necrosis) in 2017.	30
6	Effect of growth regulator treatments on nature of callus produced from chicory leaf explants in 2017.	31
7	Effect of two auxin types and their concentrations on fresh weights of formed friable callus of Chicory (<i>Cichorium intybus</i> L.) produced by <i>in vitro</i> culture under light and dark conditions in two years (2017 and 2018).	33

Table		Page
No.		
8	Effect of two auxin types and their concentrations on dry weights of formed friable callus of Chicory (<i>Cichorium intybus</i> L.) produced by <i>in vitro</i> culture under light and dark conditions in two years (2017 and 2018).	34
9	Effect of two auxin types and their concentrations on total phenolic compounds extracted from friable callus produced by <i>in vitro</i> culture from leaf explants of Chicory (<i>Cichorium intybus</i> L.) in two years (2017 and 2018).	35
10	Effect of two auxin types and their concentrations on total flavonoids extracted from friable callus produced by <i>in vitro</i> culture from leaf explants of Chicory (<i>Cichorium intybus</i> L.) in two years (2017 and 2018).	36
11	Effect of two auxin types and their concentrations on free amino acids extracted from friable callus produced by <i>in vitro</i> culture from leaf explants of Chicory (<i>Cichorium intybus</i> L.) in two years (2017 and 2018).	37
12	Effect of two auxin types and their concentrations on total soluble protein (TSP) extracted from friable callus produced by <i>in vitro</i> culture from leaf explants of Chicory (<i>Cichorium intybus</i> L.) in two years (2017 and 2018).	38
13	Effect of two auxin types and their concentrations on reducing sugars extracted from friable callus produced by <i>in vitro</i> culture from leaf explants of Chicory (<i>Cichorium intybus</i> L.) in two years (2017 and 2018).	39

Table		Page
No.	polyphenol oxidase (PPO) extracted from friable callus produced by <i>in vitro</i> culture from leaf explants of Chicory (<i>Cichorium intybus</i> L.) in two years (2017 and 2018).	
15	Effect of two auxin types and their concentrations on phenylalanine ammonia lyase (PAL) extracted from friable callus produced by <i>in vitro</i> culture from leaf explants of Chicory (<i>Cichorium intybus</i> L.) in two years (2017 and 2018).	41
16	Effect of two auxin types and their concentrations on guaiacol peroxidase (G-POD) extracted from friable callus produced by <i>in vitro</i> culture from leaf explants of Chicory (<i>Cichorium intybus</i> L.) in two years (2017 and 2018).	42

LIST OF PLATES

Plate		Page
No.		
1	A paint drawing illustrating chicory (Cichorium intybus	4
	L.) from Thomé (1885).	
2	In vitro seedlings of chicory growth after two weeks on ½	29
	MS and agar media.	
3	Effect of growth regulator treatments on chicory leaf	31
	explant response.	
4	Effect of auxin treatments on fresh weights of friable	32
	callus of chicory.	

VII

LIST OF APPENDICES

Appendix		Page
No.		
1	Timeline history of development of in vitro plant	61
	tissue culture techniques over the years.	
2	Gamborg B5 medium and Heller's medium	62
	composition.	
3	Effect of sodium hypochlorite on pathogenic	63
	microorganisms (bacteria, fungi and viruses) as	
	chemical reactions.	
4	Murashige and Skoog medium composition	64
5	Citric acid cycle.	65
6	Schematic structure of shikimic acid and malonic	66
	acid simple pathway.	
7	Drawing illustrating major pathways of secondary	67
	metabolites.	