

بسم الله الرحمن الرحيم

-Cardon - Cardon - Ca

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

بعض الوثائق

الأصلية تالفة

بالرسالة صفحات

لم ترد بالأصل

A NEW TYPE-SPECIFIC CONCURRENCY CONTROL ALGORITHM

FACULTY OF ENGINEERING

ALEXANDRIA UNIVERSITY

A NEW TYPE-SPECIFIC CONCURRENCY CONTROL ALGORITHM

A thesis submitted to the

Department of Computer Science and Automatic
Control
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

By:

Mohamed Abd El-Hafiz Mahfouz supervised by

Prof. Dr . Salah Selim

Dr . Alaa El-Din Mukhtar

Dr . Nagwa El-Meky

Alexandria , Sept. 1995

We certify that we have read this thesis and that in our opinion it is fully adequate in scope and quality, as a dissertation for the degree of Master of Science

Exam Committee:

1. Prof. Dr. Abdul-Monem Yousif Belal

Department of Electric Engineering

Cairo University

2. Prof. Dr. Magdy Nagy

Engineering
A. Z. B. C.
M. N. W. Department of Computer Science and Automatic Control Alexandria University

3. Prof. Dr. M. Salah Seleim

Department of Computer Science and Automatic Control Alexandria University

For the Faculty of Council:

Prof. Dr. Adel L. Mohammadain

Al Moh sy Vice Dean for Graduate Studies and Research Faculty of Engineering-Alexandria University

Acknowledgments

I greatly acknowledge the contribution of Dr. Nagwa El-Meky and Dr. Alaa El-Din via their experienced guidance and supervision, which had been the major incentive in the successful completion of this work. Their unfailing advice and genuine concern are greatly appreciated.

Special thanks are due to Prof. Dr. Salah Selim for his constant help and valuable advice.

I take advantage of this occasion to recognize and acknowledge the constant support accorded to me by the stall of my department, throughout my undergraduate and graduate years.

Dedicated to my parents, my wife, my sister Mona and my lovely son kareem

TABLE OF CONTENTS

	PAGE
ABŞTRACT	iv
CHAPTER I - INTRODUCTION	1
1.1 BACKGROUND	1
1.2 TRANSACTION PROCESSING	2
1.3 CONCURRENCY CONTROL IN OBJECT-ORIENTED SYSTEMS	3
1.4 DATA APPROACH	4
1.4.1 INTERTYPE SYNCHRONIZATION	4
1.4.2 LOCAL CONCURRENCY CONTROL	6
1.4.2.1 COMMUTATIVITY-BASED MODELS	6
1.4.2.2 RECOVERABILITY-BASED MODELS	8
1.4.2.3 SERIAL DEPENDENCY-BASED MODELS	9
1.4.2.4 COMPARISON OF THE MODELS OF THE DATA	10
APPROACH	
1.5 TRANSACTION APPROACH	12
1.5.1 MULTILEVEL TRANSACTION MANAGEMENT	12
1.5.2 INTERTRANSACTION COMMUNICATION	13
CHAPTER II - THE PROPOSED ALGORITHM	
2.1 INTRODUCTION	15
2.2 RELATED WORK	16
2.3 A CONCURRENCY CONTROL AND COMMIT PROTOCOL	17
2.3.1 THE PROPOSED CONCURRENCY CONTROL ALGORITHM	18
2.3.2 COMMITTING PSEUDO COMMITTED TRANSACTION	20
2.3.3 PROVING CORRECTNESS OF THE ALGORITHM	21

CHAPTER III -THE MEAN VALUE MODEL FOR THE PERFORMANCE ANALYSIS OF THE STUDIED TYPE- SPECIFIC CONCURRENCY CONTROL ALGORITHMS

1	3.1 INTRODUCTION	23
	3.2 THE MODELING APPROACH	24
,	3.2.2 MODEL PRESENTATION	25
į	3.2.3 BASIC EQUATIONS	30
1	3.2.4 SOLUTION TECHNIQUE	33
	3.3 ANALYSIS OF ALGORITHM I:	34
	(COMMUTATIVITY BASED ALGORITHM)	
	3.4 ANALYSIS OF ALGORITHM II:	39
ı	(RECOVERABILITY BASED ALGORITHM)	
1	3.5 ANALYSIS OF ALGORITHM III :	49
	(SERIAL DEPENDENCY BASED ALGORITHM)	
	3.6 MODELING HARDWARE RESOURCE CONTENTION	55
'	3.7 CONCLUSIONS	56
- -		
HA	PTER IV - SIMULATION STUDY	
1		
!	4.1 INTRODUCTION	57
	4.2 SIMULATION PROCESS	58
I	4.2.1 THE PROPOSED SIMULATION MODEL	58
i	4.2.2 EXPERIMENTAL INFORMATION	59
	4.2.3 PERFORMANCE SETTINGS	60
ı	4.2.4 PERFORMANCE METRICS	60
	4.2.5 IMPLEMENTATION OF THE SIMULATION MODEL	61
	4.2.6 START-UP POLICIES	61
	4.2.7 DETERMINATION OF THE SIMULATOR	62
	SAMPLE SIZE	
	4.3 VERIFICATION AND VALIDATION	64
	4.3.1 VERIFICATION OF THE SIMULATION MODEL	64
	4.3.2 VALIDATION OF THE SIMULATION MODEL	64
	4.4 VALIDATION OF THE ANALYTICAL MODEL	7
	4.5 CONCLUSIONS	70

CHAPTER V - PARAMETRIC STUDIES

5.1 INTRODUCTION	80
5.2 EFFECT OF VARYING THE MULTIPROGRAMMING LEVEL	84
5.3 EFFECT OF VARYING THE DATABASE SIZE	93
5.4 EFFECT OF VARYING THE TRANSACTION SIZE	96
5.5 EFFECT OF VARYING THE DEGREE OF SERIAL DEPENDENCY	98
5.6 EFFECT OF USING THE RESULTS OF OPERATIONS	101
5.7 EFFECT OF HARDWARE RESOURCE CONTENTION	105
CHAPTER VI - SUMMARY AND CONCLUSIONS	
6.1 SUMMARY	110
6.2 CONCLUSIONS ABOUT THE PROPOSED ALGORITHM	111
6.3 CONCLUSIONS ABOUT THE ANALYTICAL MODEL	111
6.4 RECOMMENDATIONS FOR FUTURE EXTENSIONS	112
APPENDIX A - EXAMPLE OF TYPE-SPECIFIC CONCURRENCY CONTROL	
APPLIED TO A SIMPLE INVENTORY SYSTEM	113
REFERENCES	123
i	

ABSTRACT

The work of this thesis has been mainly motivated by the advantages of using the serial dependency as a conflict relation which is weaker than the commutativity relation. We propose a new type-specific concurrency control algorithm which uses serial dependency as a conflict relation. Unlike the pessimistic concurrency control algorithms in literature, which use a symmetric serial dependency relation, the proposed algorithm uses an asymmetric serial dependency relation. It distinguishes symmetric and asymmetric conflicts and uses this information to improve the level of concurrency.

Performance analysis of algorithms that use the serial dependency relation are not presented in the literature. Consequently, one of the objectives of this study ,was to propose an approximate analytical model to obtain bounds for the performance of the proposed algorithm relative to the related algorithms proposed in literature.

An analytical model was formulated to obtain bounds for the performance of the studied algorithms. The proposed analytical model is based on the mean value approach.

A simulation model was constructed, verified and validated. Then, the approximations of the proposed analytical model were validated by comparing the results obtained from the analytical solution to those obtained from the corresponding simulation runs.

Finally, several parametric studies were conducted using the validated analytical model to compare the performance of the proposed algorithm to the related type-specific algorithms

CHAPTER I INTRODUCTION