

بسم الله الرحمن الرحيم

-Cardon - Cardon - Ca

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

بعض الوثائق

الأصلية تالفة

بالرسالة صفحات

لم ترد بالأصل

B18860

ZAGAZIG UNIVERSITY FACULTY OF ENGINEERING-SHOUBRA

DEVELOPMENT OF ULTRASONIC RANGING SYSTEM FOR A MOBILE ROBOT

BY

ENG. MERVAT AHMED EL-SYAED HUSSEIN

Senior Instructor at Shoubra El-Kheima Power Station

A Thesis

Submitted in Partial Fulfillment for the Requirements of the degree of Master of Science in Electrical Engineering, Communications Department

Supervised by

ASS. PROF. DR. TAREK H. ELEWA

Associate Professor of Electronic Engineering Faculty of Engineering Zagazig University, Benha Branch

DR. ASHRAF M. HAFEZ

Faculty of Engineering Zagazig University, Benha Branch

Cairo, 2005

APPROVAL SHEET

ZAGAZIG UNIVERSITY, BENHA BRANCH FACULTY OF ENGINEERING (SHOUBRA)

The undersigned certify that they have read and recommended to Shoubra Faculty of Engineering for acceptance, a Dissertation titled " **Development of Ultrasonic Ranging System for a Mobile Robot**" submitted by **Eng/ Mervat Ahmed El-Sayed Hussein** in partial fulfillment for the requirements of the degree of Master in Electrical Engineering (Electronic).

Exam Committee:

Prof. Dr. Taha El-Sayed Taha

Lakarleyec

Professor of Electronics and Communications Vice-Dean of the Faculty of Engineering, Monof Monifeia University.

Ass. Prof. Dr. Mohamed Lotfy Rabeh

Associate Professor of Electronics and Communications
Department of Electrical Engineering
Shoubra Faculty of Engineering,
Zagazig University, Benha Branch

Ass. Prof. Dr. Mohamed Tarek H. Elewa

Tarek Eleva

Associate Professor of Electronics and Communications Department of Electrical Engineering Shoubra Faculty of Engineering, Zagazig University, Benha Branch

ACKNOWLEDGEMENT

I would like to take this opportunity to express my deepest gratitude to Associate Professor Dr. Tarek H. Elewa for his supervision, helpful advice and continuos encouragement during the course of this study.

I wish to thank and express my appreciation to **Dr. Ashraf M. Hafez** for his valuable guidance, helpful advice, useful discussions and constructive suggestions during all stages of this research.

My special thanks to my colleagues Eng. Ola Ahmed Mohamed and Eng. Bassem Helal for their assistance during the experimental work.

My deepest thanks to my husband Dr. Mahmoud El Mohr for his encouragement during the course of this research and especially during the writing stage. Many special thanks to my son (Mohab) and my daughter (Mayar) and all my family members.

At last but not least I would like to thank My Managers and colleagues at Shoubra El-Kheima Power Station, Ministry of Electricity for their encouragement and assistance during the research period.

Finally, I wish to thank every one participated in some way or the other during the course of this research.

ABSTRACT

The aim of this study was to develop an Ultrasonic (US) range finding system for an experimental mobile Robot, which detects and avoids obstacles by measuring the object distance using the Time of Flight (TOF) technique. This has been achieved in three stages. In the first stage, a single Transmitter/Receiver range finding system was developed. A 40 kHz square signal was experimentally generated and magnified to a level sufficient to drive the piezoelectric transducer (transmitter), which in turn converted this square signal into an ultrasonic wave. The signal was then emitted to the surrounding environment. On colliding with target, the ultrasonic signal would be reflected and detected by the receiver, which in turn converts this ultrasonic signal into an electric signal that provides the microcontroller with an external interrupt. The time elapsed from emission to detection of the reflected pulse was recorded and used along with the speed of sound in air for estimating the object distance.

Due to the poor angular resolution and the small coverage area associated with the single sonar system, a multi sonar system was developed in the second stage to overcome such limitations and improve the target resolution. An array of four transmitting transducers was used for the transmission unit; each transmitter was surrounded with two receivers. The operation of these transmitters and receivers was controlled using two different multiplexing logic circuits. An interface with the PC has been successfully implemented in the third stage. The object distance estimated by the microcontroller was verified and displayed on the PC in both numerical and graphical format.

Experimental measurements were taken on various targets with different geometry and positions by the developed single and multi sonar range finding systems. For single sonar range finding system, the object distance and time of flight were experimentally taken on flat horizontal surface, inclined surface with an angle of inclination of 60 degrees and on a corner target. The obtained results reflected the ability of the single sonar system to detect the flat object when placed in a horizontal position. While for the other two cases, the single sonar system has failed to identify the object position and geometry.

For multi sonar range finding system, the object distance and recorded time were experimentally taken on flat target placed in horizontal position and in inclined positions with inclination angles of 30, 60, 80 and 90 degrees. The obtained results reflected the high performance of the multi sonar range finding system over the single one for all the studied cases. In addition, the multi-sonar system has successfully identified the corner location and geometry. It also detected the cylindrical objects from multi viewpoints.

LIST OF CONTENTS

A COT	NOW	EDCE	1 TENT	ag'	e I
					[]
			na		Ш
			rs	_	
			ATIONS		
LIST	OFSY	YMBOL	S	•••	IA
CHA	PTER	1 INTRO	ODUCTION		
1.1	Field o	of Study .		•••	1
1.2	Scope	of Study		• • • •	2
1.3	Outlin	e of Thes	is	••••	4
CHA			RATUE REVIEW		
2.1					
2.2	Sensor				
	3.3.1		nic Transducers		
	3.3.2	Perform	ance Factor		
		2.2.2.1	Transducers Design Considerations		
		2.2.2.2	Environmental factors		. 12
		2.2.2.3	Target Considerations		
		2.2.2.4	Potential Range Errors		21
2.3	Multip	ole Trans	ducers	• • • •	27
2.4			ging Techniques		
CH			EM DESIGN AND IMPLEMENTATION		
3.1					
3.2			of A single Transmitter/Receiver Sonar		
3.3	Micro		r Based Single Module Ultrasonic Transreceiver		
	3.3.1		tion of transmitted Pulses		
	3.3.2		w Comparator		
	3.3.3		e Measurements		
	3.3.4		art		
3.4	Multi		ange Finding System		
	3.4.1		s Configurations		
	3.4.2		les of System Operation		
	3.4.3		lexing Logic Circuits		
	3.4.4	Softwa	re Flow Chart		49

3.5	Microcontroller and PC Interface	51
	3.5.1 Principle of Serial Operation	53
	3.5.2 Software Program	
CH	APTER 4 EXPERIMENTAL VERIFICATIONS	
4.1	Introduction	55
4.2	Single Sonar Results	
4.3	_	
4.4	Data Fusion	76
CH.	APTER 5 CONCLUSIONS AND RECOMMONATIONS FOR	FUTURE WORK
5.1	Summary and Conclusions	78
5.2	Recommendation for Future Work	
RE:	FERENCES	82
	PENDICES	
App	pendix A	89
	pendix B	

LIST OF FIGURES

	Page
Figure 2-1, Ultrasonic transducers: piezoelectric (left) and electrostatic (right)	
Figure 2-2, Typical sonar beam pattern	- 9
Figure 2-3, Diameter of the insonified footprint at the surface, assuming incidence -	- 9
Figure 2-4, Wavelength of sound in air at room temperature versus frequency	- 11
Figure 2-5, Maximum attenuation of sound in air	- 11
Figure 2-6, Speed of sound in air as a function of temperature	13
Figure 2-7, Reduction in the power per unit area in the cone OABCD	14
Figure 2-8, Variation in the attenuation of sound in air for varying humidity	
At frequencies between 40 and 200 kHz	15
Figure 2-9, Effect of target orientations and irregularities on the returned echo	18
Figure 2-10, Experiment configuration showing the four ideal cases for	
a sonar transducers	20
Figure 2-11, Low level sonar traces	21
Figure 2-12, Ultrasonic ranging error due to beam divergence	22
Figure 2-13, Beam splitting technique using two sensors	23
Figure 2-14, Specular reflection error occurs in smooth surface when the	
angle of reflection (b) is equal to the angle on incidence (a) [2]	24
Figure 2-15, due to Specular reflection, the measured range would represent	
the round trip distance through points A, B, C as oppose to	
actual distance between A and B [3]	24
Figure 2-16, Conventional system without cross talk [57]	
Figure 2-17, Conventional system cross talk [60]	
Figure 2-18, EERUF system with cross talk	
Figure 2-19, (A) a wide angle transducer (B) single narrow beam transducer	
(C) Multiple transducers	
Figure 3-1, Block diagram for single sensing system	33
Figure 3-2, Ultrasonic transmitters and high sensitivity receivers designed	
for sending and receiving ultrasonic sound through the air at 40 kHz	34
Figure 3-3, Fist stage amplification of the reflected signal	
Figure 3-4, Second stage amplification of the reflected signal	36
Figure 3-5, Structure of the Intel 8031 microcontroller	37
Figure 3-6, Timing diagram for the generation of 40 kHz pulses	38
Figure 3-7. Microcontroller output signal (40 kHz)	39

Figure 3-8, Amplified reflected signal during a limited period, first stage	39
Figure 3-9, Amplified reflected signal during a limited period, second stage	41
Figure 3-10, output of window Comparator	41
Figure 3-11, Single sonar system developed in this study	42
Figure 3-12, Flowchart for the operation of single sonar system	
Figure 3-13, Arrangement of multi sonar transducers	
Figure 3-14, Block diagram of multi sonar system	
Figure 3-15, Multi sonar system card	47
Figure 3-16, Flowchart for the operation of multi sonar system	
Figure 3-17, Microcontroller/PC interface model	
Figure 3-18, Transmitted and Received data lines for RS-232	
Figure 3-19, Block diagram of interface circuit for serial communications	
Figure 4-1, Experimental set up for Experiments 1 and 2	56
Figure 4-2, Flat target placed parallel to the Sensor's plane (Experiment1)	
Figure 4-3, Flat target placed at angle of 60° with the Sensor's plane (Experiment2)	
Figure 4-4, Experimental set up for Corner target surface (Experiment 3)	60
Figure 4-5, An Example for corner target Surface (Experiment 3)	. 61
Figure 4-6, Experimental set up of the target surface (Experiments 4 to 8)	
Figure 4-7, Target Surface placed parallel to the plane of Sensors (Experiment 4)	
Figure 4-8, Flat target placed at angle of 30° with the plane of Sensors	65
Figure 4-9, Flat target placed at angle of 60° with the plane of Sensors	66
Figure 4-10, Flat target placed at angle of 80° with the plane of Sensors	
Figure 4-11, Flat target placed perpendicular to the plane of Sensors (Experiment8)-	
Figure 4-12, Experimental set up for Corner target surface (Experiment 9)	
Figure 4-13, An example for corner target Surface (Experiment 9)	
Figure 4-14, Experimental set up of Cylindrical target surface	
Figure 4-15, Cylindrical column with 30 Cm in diameter (Experiment 10)	
Figure 4-16. Cylindrical model with 10 Cm in diameter (Experiment 11)	

List of Tables

	Page
Table 3.1, Technical Data sheet for the Ultrasonic transmitting and Receiving piezoelectric transducers Model	34
Table 3.2, Correlation between Ultrasonic transmitting and Receiving transducers	48

List of Symbols

В	Gas constant
C	Speed of sound in air
c	Sound velocity which is equal to 343 m/s at room temperature
D	Spot diameter in inches
d	Transducer diameter
F	Temperature in degrees Fahrenheit
f	Operating frequency in kHz
G	Gravitational constant
I	Intensity (power per unit area) at distance R
I_i	Incident intensity
Io	Maximum (initial) intensity
I_r	Reflected intensity
K	Ratio of specific heat, (for air $= 1.4$)
$\mathbf{K}_{\mathbf{m}}$	bulk modulus of elasticity
$\mathbf{K}_{\mathbf{r}}$	Coefficient of reflection
R	Range of measured distance (m)
T	Temperature of the air in 'C
t	Time of flight (Sec.)
$\mathbf{Z_a}$	Acoustic impedance for air
\mathbf{Z}_{0}	Acoustic impedance for the target object
α	Attenuation coefficient for medium
θ	Total beam angles in degrees
λ	Acoustic wavelength
ρ	gas density