سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

FACULTY OF ENGINEERING ALEXANDRIA UNIVERSITY

IMPROVING THE STATISTICAL PARAMETRIC GAUSSIAN CLASSIFIER USING NEURAL NETWORKS

A thesis submitted to the

Department of Computer Science and Automatic Control in partial fulfillment of the requirements for the degree of

Master of Science

By

Hala Abd El Aziz El Sorady

Supervised by

Prof. Dr. Badr Abuelnasr Prof. Dr. Mohamed Marouf Prof. Dr. Soheir Bassiouny We certify that we have read this thesis and that in our opinion, it is fully adequate, in scope and quality, as a dissertation for the degree of Master of Science.

Exam. Committee:

1- Prof. Dr. Abdel-Monem Youssef Belal.

Dept. of Electrical Engineering Cairo University.

2- Prof. Dr. Badr Mohamed Abuelnasr.

Dept. of Computer Science and Automatic Control Alexandria University.

3- Prof. Dr. Onsy Ahmed Abdel Alim.

Dept. of Electrical Engineering Alexandria University.

4- Prof. Dr. Soheir Ahmed fouad Bassiouny.

Dept. of Computer Science and Automatic Control Alexandria University.

For the Faculty Council:

Prof. Dr. Adel Loutfy Mohamadein.

Vice Dean for Graduate Studies and Research Faculty of Engineering - Alexandria University.

Badraluelvanz

0.A.

A.Y. Be

Soher P. F. B

To My Beloved Parents and Sisters

Acknowledgement

Thanks to God for helping me finish this thesis.

I wish to express my appreciation to Prof. Dr. Badr Abuelnasr for his support and continuous encouragement.

No words can express my deep gratitude and great thanks to Prof. Dr. Amin Shoukry for his continuous help and precious suggestions without which it was impossible for this work to complete.

My deepest thanks to Prof. Dr. Soheir Bassiouny for her close and valuable supervision, guidance and encouragement.

I am really indebted to Prof. Dr. Mohamed Marouf from whom I learned so much throughout my under graduate and post graduate studies.

My deepest thanks to Prof. Dr. Onsy Abdel Alim and deceased Prof. Dr. Mohamed Ezz Elarab for their help and advice.

Special thanks are due to Prof. Dr. Mohamed Ismail for his assistance and support by references.

My deepest thanks to Eng. Hassan Fahmy for suppling me with sonar echoes.

My deepest thanks to my friend Nashwa Salah for her help.

Finally, my deepest thanks to my parents and sisters for their support, understanding and encouragement.

PREFACE

The statistical approach to pattern recognition is among the early approaches applied in this field of research. Parametric statistical classifiers design techniques have been extensively studied, in general, and Gaussian classifiers, in particular, due to its analytical tractability [10]. However, some assumptions inherent in the design of the Gaussian classifier result in suboptimal classifier [9].

Recently [33], it was demonstrated, both theoretically and experimentally, that a neural network pattern classifier generates the empirical distribution of the sample data which are used to train the network. This thesis takes advantage of this fact and improves a Gaussian classifier using an isomorphic sigma-pi neural network [9].

This study contains four chapters, and three appendices. Their contents are as follows:

<u>Chapter I:</u> Presents different approaches to pattern recognition. Special attention is given to classifiers designed using the decision theoretic approach such as neural networks classifiers and traditional statistical classifiers. Both of these classifiers are discussed in more detail.

Chapter II: Presents the main drawbacks of the basic parametric Gaussian classifier and a method for mapping it to a Gaussian isomorphic neural network (GIN) and mapping the GIN back to a Gaussian classifier. Backpropagation learning is reviewed and a modification is suggested to overcome network paralysis. The algorithms used in classification are stated along with their data structures, storage and time complexities.

Chapter III: The hybrid statistical neural network classifier proposed in chapter II is tested using a generated multivariate normal distributed data and two well known data sets (The Fisher's iris data and the british towns data). Also, a detailed design of a sonar target recognition system is presented including a review on sonar, data acquisition, feature extraction and results.

<u>Chapter IV:</u> Concludes the present work and discusses some possible directions for future research work.

Appendix A: Presents the Gaussian elimination algorithm for evaluating the determinant and the inverse of a matrix. Also, unstable or ill-conditioned systems are discussed.

<u>Appendix</u> <u>B:</u> Presents Linear prediction and a special attention is given to the all-pole model.

Appendix C: Lists of Fisher's iris data, british towns data and sonar data are given.

LIST OF CONTENTS

List of Contents

Chapter I: Introduction

1.1	Introduction	1
1.2	Approaches to pattern recognition	2
	1.2.1 Decision Theoretic Approach	2
	1.2.2 Syntactic Approach	
1.3	Neural networks versus traditional classifiers	
1.4	Traditional statistical classifiers	8
	1.4.1 Bayes rule	
	1.4.2 Bayes decision theory-the continuous case	
	1.4.3 Minimum-error-rate classification	
	1.4.4 Discriminant functions classifiers	. 11
	1.4.5 Parameter estimation and supervised learning	. 12
	1.4.6 Maximum likelihood estimation	. 13
	1.4.7 Gaussian Classifier	. 15
•	1.4.7.1 The multivariate normal density	. 15
	1.4.7.2 Definition of a Gaussian Classifier	
	1 1 7 2 Estimating 11 and \(\nabla\) using maximum 1	1111
	1.4.7.3 Estimating μ and Σ using maximum 1	ikeiinooa
	estimation estimating μ and ∠ using maximum I	
1.5	- ,	. 17
	estimationArtificial neural networks (ANN), connectionist or	. 17 parallel
	estimation	. 17 parallel . 18
	estimation	. 17 parallel . 18 . 18
	estimation	. 17 parallel . 18 . 18 . 21
	estimation Artificial neural networks (ANN), connectionist or ributed processing (PDP) 1.5.1 Introduction 1.5.2 Major aspects of ANNs	. 17 parallel . 18 . 18 . 21 . 24
	estimation Artificial neural networks (ANN), connectionist or ributed processing (PDP) 1.5.1 Introduction 1.5.2 Major aspects of ANNs 1.5.3 Phases of operation of ANNs	. 17 parallel . 18 . 18 . 21 . 24 . 25
	estimation Artificial neural networks (ANN), connectionist or ributed processing (PDP) 1.5.1 Introduction 1.5.2 Major aspects of ANNs 1.5.3 Phases of operation of ANNs 1.5.4 Classes of ANNs	. 17 parallel . 18 . 18 . 21 . 24 . 25
	estimation Artificial neural networks (ANN), connectionist or ributed processing (PDP) 1.5.1 Introduction 1.5.2 Major aspects of ANNs 1.5.3 Phases of operation of ANNs 1.5.4 Classes of ANNs 1.5.5 Specific versions of ANNs	. 17 parallel . 18 . 18 . 21 . 24 . 25 . 25
	estimation Artificial neural networks (ANN), connectionist or ributed processing (PDP) 1.5.1 Introduction 1.5.2 Major aspects of ANNs 1.5.3 Phases of operation of ANNs 1.5.4 Classes of ANNs 1.5.5 Specific versions of ANNs 1.5.5 Specific versions of ANNs	. 17 parallel . 18 . 18 . 21 . 24 . 25 . 25 . 25
	estimation Artificial neural networks (ANN), connectionist or ributed processing (PDP) 1.5.1 Introduction 1.5.2 Major aspects of ANNs 1.5.3 Phases of operation of ANNs 1.5.4 Classes of ANNs 1.5.5 Specific versions of ANNs 1.5.5 Specific versions of ANNs 1.5.5.1 Simple linear models 1.5.5.2 Perceptrons (linear threshold units)	parallel 18 18 18 21 24 25 25 25 25
	estimation Artificial neural networks (ANN), connectionist or ributed processing (PDP) 1.5.1 Introduction 1.5.2 Major aspects of ANNs 1.5.3 Phases of operation of ANNs 1.5.4 Classes of ANNs 1.5.5 Specific versions of ANNs 1.5.5.1 Simple linear models 1.5.5.2 Perceptrons (linear threshold units) 1.5.5.3 Nonlinear classifiers	parallel 18 . 18 . 18 . 21 . 24 . 25 . 25 . 25 26 30 30
	estimation. Artificial neural networks (ANN), connectionist or ributed processing (PDP). 1.5.1 Introduction. 1.5.2 Major aspects of ANNs. 1.5.3 Phases of operation of ANNs. 1.5.4 Classes of ANNs. 1.5.5 Specific versions of ANNs. 1.5.5.1 Simple linear models. 1.5.5.2 Perceptrons (linear threshold units). 1.5.5.3 Nonlinear classifiers. 1.5.5.3.1 High-order, sigma-pi or σ-π networks	. 17 parallel . 18 . 18 . 21 . 24 . 25 . 25 25 26 30 30 33
	estimation Artificial neural networks (ANN), connectionist or ributed processing (PDP) 1.5.1 Introduction 1.5.2 Major aspects of ANNs 1.5.3 Phases of operation of ANNs 1.5.4 Classes of ANNs 1.5.5 Specific versions of ANNs 1.5.5.1 Simple linear models 1.5.5.2 Perceptrons (linear threshold units) 1.5.5.3 Nonlinear classifiers 1.5.5.3.1 High-order, sigma-pi or σ-π networks 1.5.5.3.2 Multi-layer feedforward networks	. 17 r parallel . 18 . 18 . 21 . 24 . 25 . 25 . 25 26 30 30 33 35

ChapterII: Mapping a Gaussian Classifier to a neural network: Algorithms

2.1	Introduction	37
2.2	Isomorphism between a Gaussian Classifier and	l a sigma <mark>-</mark> pi
neu	ral network	37
	2.2.1 Nonoptimality of the Gaussian Classifier a	and ways for
	overcoming it	37
	2.2.2 Mapping a Gaussian Classifier to a Gaussian	ı Isomorphic
	Network (GIN) and mapping the GIN back to	a Gaussian
	Classifier	
2.3	Backpropagation learning	42
	2.3.1 Delta rule	42
	2.3.2 The Delta rule and gradient descent	43
	2.3.3 The generalized Delta rule for first order	feedforward
	multilayer networks	44
	2.3.4 Drawbacks in learning by backpropagation	47
	2.3.4.1 Local minima	47
	2.3.4.2 Step size	48
	2.3.4.3 Network paralysis	
	2.3.5 The generalized Delta rule and feedforward	ard networks
	with sigma-pi units	
2.4	Classifier design: algorithms	52
	2.4.1 Initializing weights as defined for GIN	54
	2.4.2 Learning using backpropagation	
2.5	Data structures and storage complexity	62
2.6	Analysis of time complexity	64
	2.6.1 Time complexity of classifiers design	64
	2.6.2 Time complexity of decision making	69
Ch	apter III: Implementing classification algorith	ms
3.1	Testing with generated data and well k	nown data
sets	S	70
	3.1.1 Classification of generated data	70
	3.1.2 Classification of Fisher's iris data	
	3.1.3 Classification of british towns data	76

3.2	Case study: Sonar target recognition system	79
	3.2.1 Introduction	
	3.2.2 A review on sonar	79
	3.2.2.1 The nature of sonar	.79
	3.2.2.2 Sonar targets	80
	3.2.2.3 Echo formation processes	80
	3.2.2.4 Echo characteristics	82
	3.2.2.5 Factors affecting echo formation	83
	3.2.3 The experimental data	84
	3.2.3.1 Introduction	84
	3.2.3.2 The measuring equipments and the proce	edure of
	measurements	84
	3.2.3.3 The transmitted signal	. 85
	3.2.3.4 Calculating sampling rate	87
	3.2.3.4.1 A review on signal processing	. 87
	3.2.3.4.1.1 The Fourier transformation	87
	3.2.3.4.1.2 Bandlimited signals	87
	3.2.3.4.1.3 Sampling of time signals	88
	3.2.3.4.1.4 Numerical calculation of discrete	Fourier
	transform (DFT)	
	3.2.3.4.2 Sampling rate for the received signal	. 89
	3.2.3.5 Obtained data	
	3.2.3.5.1 Targets used in the experiment	. 94
	3.2.3.5.2 Echoes of the targets	
	3.2.3.6 Removing the noise from the received signal	
	3.2.4 Feature extraction	
	3.2.4.1 Modeling the target echo using	
	prediction	
	3.2.4.2 Comparing the signal spectrum $P(f)$ with th	_
	model spectrum $\hat{P}(f)$	
	3.2.4.3 Choosing the order of predictor	
	3.2.4.4 The features used-reflection coefficients	
	3.2.4.5 The algorithms used in feature extraction	
	3 2 5 Results	108