Lactoferrin Versus Ferrous Sulfate in Management of Iron Deficiency Anemia among Female Medical Ain Shams Students

Thesis

Submitted for the partial fulfillment of Master Degree In Clinical Nutrition

By **Noha Mostafa Roshdy** M.B.B.Ch

Supervised by

Prof. Dr. Sanaa Youssef Shaaban

Professors of Pediatrics
Faculty of medicine - Ain Shams University

Prof. Dr. Randa Reda Mabrouk

Professors of Clinical Pathology Faculty of medicine - Ain Shams University

Dr. Yasmin Gamal Abdou El Gendy

Assistant Professor of Pediatrics Faculty of medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

I am deeply thankful to Prof. Dr. Sanaa Youssef Shaaban, Professor of Pediatrics for her unlimited support and great help.

I wish to express my deepest thanks, appreciation to **Prof. Dr. Randa Reda**, Head of Clinical Nutrition Board and Professor of Clinical Pathology for her meticulous supervision, kind guidance and valuable instructions.

I would like to extend my thanks to Ass. Prof. Dr. Yasmin Gamal, Assistant Professor of Pediatrics for her support and great effort. I would to thank my colleagues, the participants for their cooperation.

Last and not least, my deepest appreciation to My Family, My Friends for their love, care and unconditional support throughout my life.

List of Contents

Title Page No.
List of Tables i
List of Figuresii
List of Abbreviationsiii
Introduction
Aim of the Work
Review of literature
•L actoferrin
•
•M
anagement of Iron Deficiency Anemia27
Participant and methods
Results
Discussion
Summary 69
Conclusion
Recommendations
Reference 74

	List of Contents
Arabic summary	

List of Tables

Table No.	Title Page No.		
Table (1):	Lactoferrin concentration in different human fluids and secretions		
Table (2):	World Health Organization definition of anemia17		
Table (3):	Etiology of iron deficiency		
Table (4):	Estimated cumulative iron dose by simplified methods		
Table (5):	Comparison between groups according to demographic data		
Table (6):	Comparison between groups according to risk factors		
Table (7):	Comparison between groups according to Hb54		
Table (8):	Comparison between groups according to RBC count		
Table (9):	Comparison between groups according to HCT56		
Table (10):	Comparison between groups according to MCV57		
Table (11):	Comparison between groups according to MCH58		
Table (12):	Comparison between groups according to RDW59		
Table (13):	Comparison between groups according to serum Fe 60		
Table (14):	Comparison between groups according to TIBC61		
Table (15):	Comparison between study groups according to serum ferritin level. 62		
Table (16):	Comparison between study groups according to transferrin saturation		
Table (17):	Comparison between groups according to side effect of supplementation		

List of Figures

Figure No.	Title Page No.		
Figure (1):	Structure of lactoferrin.	6	
Figure (2):	(A) Structure of lactoferrin in apo-form (iron-free); and		
	(B) structure of lactoferrin in holo-form (iron-		
	saturated)	8	
Figure (3):	The bacterial iron transport mechanisms	9	
Figure (4):	re (4): Haem and non-haem iron absorption pathways		
	(duodenal enterocytes)	13	
Figure (5):	Metabolism of iron	15	
Figure (6):	The role of hepcidin in normal iron homeostasis	16	
Figure (7):	Distribution of iron in the body	21	
Figure (8):	Laboratory diagnostic tests	23	
Figure (9):	Koilonychia (spoon nail) associated with iron		
	deficiency	27	
Figure (10):	Algorithm for management of iron deficiency anemia		
	Abbreviations: Hb, hemoglobin; IDA, iron deficiency		
	anemia	33	
Figure (11):	Outline of recognition and treatment of hypersensitivity		
	reactions to intravenous iron Abbreviations	37	
Figure (12):	Bar chart between groups according to risk factors	53	
Figure (13):	Line chart between groups according to Hb level	55	
Figure (14):	Line chart between groups according to RBC	56	
Figure (15):			
Figure (16):			
Figure (17):	Line chart between groups according to MCH	59	
Figure (18):	Line chart between groups according to RDW	60	
Figure (19):	Line chart between groups according to Fe	61	
Figure (20):	Line chart between groups according to TIBC	62	
Figure (21):			
	level	63	
Figure (22):	Line chart between groups according to transferrin		
	saturation.	64	

List of Abbreviations

Abbr.	Full term
ACLS	Advanced cardiovascular Life support
30 d	30 days
AI	Anemia of Inflammation
bLf	bovin lactoferrin
BMI	Body Mass Index
BP	Blood Pressure
DCYTB	Duodenal Cytochrome B
DMT1	Divalent Metal Transporter
DNA	Deoxyribonuclic Acid
ESAs	Erythropoiesis Stimulating Agents
Fe3+	Ferric form
Fe2++	Ferrous form
GAGs	Glycoseaminoglycans
HCT	Haematocrit
HIF	Hypoxia Inducible Factors
hLf	human Lactoferrin
НВ	Hemoglobin
HB A2	Hemoglobin Adult
HSR	Hypersensitivity Reaction
IDA	Iron Deficiency Anemia
IL6	Interleukin 6
IRIDA	Iron Refractory Iron Deficiency Anemia
kDa	kilodaltons
LID	Latent Iron Deficiency
Lps	Lipopolysaccaride
M	Molecule
MCH	Mean Corpuscular Hemoglobin
MCHC	Mean Corpuscular Hemoglobin Concentration
MCV	Mean Corpuscular Volume

List of Abbreviations

NSAID Non Steroidal Anti-Inflammatory Drugs

PB Peripheral Blood PGF2a Prostaglandin F2a

PNH Paroxysmal Nocturnal Hemoglobinuria

PTD Preterm Delivery RBCs Red Blood Cells

RDW Red Blood Cells distribution width

RES Reticuloendothelial System

rhlF Recombinant human lactoferrin

RLS Restless Legs Syndrome ROS Reactive Oxygen Species

SF Serum Ferritin
TF Transferrin

TIBC Total Iron Binding Capacity

TMPRSS6 gene Transmembrane Protease Serine Member 6

TS Transferrin Saturation
WED Willis –Ekbom Disease

Abstract

Introduction:

Iron, an essential element for cell growth and proliferation, is a component of fundamental processes such as DNA replication and energy production. Human lactoferrin (hLf), an 80-kDa multifunctional

iron-binding cationic glycoprotein. Prevalence of iron deficiency anemia is roughly 38% of pregnant women,

29% of non-pregnant women and 29% of all women of reproductive age have anemia globally.

Methods: This study as part of The Nutritional Assessment Students Ain Medical of Shams University (NAMS/ASU). They will be randomly allocated to three arms of clinical trial. All the project 1225 students were investigated by CBC; Serum Iron, Transferrin Sat. 105 students were proved to iron deficiency anemia. Results: The result supplementation of iron,lactoferrin combined showed an increase in Hb,HCT level in groupI (iron supplemented), group II (lactoferrin supplemented) as well as group III(combined supplemented) in spite of the fact that rate of change in group I and II was higher than group III.

Conclusion: This significantly high increase of hematological parameters, serum iron profile in all lactoferrin treated female lead us to suppose that it might be useful to take not only iron salt but also lactoferrin for prevention and treatment of iron deficiency anemia. In females with iron deficiency anemia, daily lactoferrin intake is good as iron salt in improving hematological parameters with fewer gastrointestinal side effects.

Keywords: Lactoferrin, Ferrous Sulfate, Iron Deficiency Anemia

INTRODUCTION

Iron, an essential element for cell growth and proliferation, is a component of fundamental processes such as DNA replication and energy production. However, it can also be toxic when present in excess for its capacity to donate electrons to oxygen, thus causing the generation of reactive oxygen species (ROS), such as superoxide anions and hydroxyl radicals (*Rosa et al.*, 2017).

Human lactoferrin (hLf), an 80-kDa multifunctional iron-binding cationic glycoprotein, is constitutively secreted by exocrine glands and by neutrophils during inflammation. It is responsible for Physiological transport of iron from tissue to circulation, thus could be used for curing iron deficiency and iron deficiency anemia (Paesano et al., 2009). hLf is recognized as a key element in the host immune defense system (Cutone et al., 2017). Bovine Lf (bLf), which shares high sequence homology with the human protein, is multifunctional glycoprotein also with antiparasitic, antibacterial, antifungal, antiviral, antiinflammatory, and immunomodulatory activities of hLf (Cutone et al., 2017).

Prevalence of iron deficiency anemia is roughly 38% of pregnant women, 29% of non-pregnant women and 29% of all women of reproductive age have anemia globally (WHO 2015).

A study done on pregnant women showed an increase of total serum iron in all bovine lactoferrin treated women (Suzuki et al., 2005). Lactoferrin was also proven useful for prevention of iron deficiency anemia specially among female long distance runners (Koikawa et al., 2008) Lactoferrin was more effective than ferrous sulphate over a two months period in pregnant women with iron deficiency anemia (Rezk et al., 2016).

Dntroduction

AIM OF THE WORK

This study aimed to compare the efficacy of lactoferrin as approved to iron supplementation or the two combined supplementation in iron deficiency anemic medical Ain Shams female students. The efficacy is determined by complete blood picture and iron profile

LACTOFERRIN

Lactoferrin (Lf) is an approximately 80-kDa ironbinding glycoprotein, belonging to the transferrin family. LF is produced and stored in specific neutrophil granules and released during neutrophil activation and degranulation (*Rodríguez-Franco al.*, 2005). It has been detected in secretory fluids.

Table (1): Lactoferrin concentration in different human fluids and secretions. (*Luigi Rosa et al.*, 2017)

Biological Fluids	Concentration (mg/mL)
Colostrum	8
Milk	1.5-4
Tears	2
Saliva	0.008
Vaginal secretion	0.008
Seminal fluid	0.112
Cerebrospinal fluid	Undetectable
Plasma	0.0004
Joint fluid	0.001

Lf, identified in 1939 in bovine milk and isolated in 1960 from both human and bovine milk, is the most important of transferrin family, owing to its multifunctional activities (*Luigi Rosa et al.*, 2017).