سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

PHARMACOKINETICAL STUDIES OF BEPHENIUM AND PYRANTEL IN LACTATING GOATS

THESIS

Presented by

Waleed Fathy Khalil Mahmoud

(B.V.Sc., Suez Canal University, 1992)

For the degree of
Master in Vetrinary Sciences
(Pharmacology)
Under Supervision of

M. Elsayed
Prof. Dr.

Mossad Gamal El-Din A. El-Sayed

Professor of Pharmacology and Vice Dean of Postgraduate Studies and researches Faculty of Vet. Medicine (Moshtohor) Zagazig University (Benha Branch) H.A. Gamaj Prof. Dr.

Hatem Abd-El-Khalek Gammaz

Professor of Pharmacology Faculty of Vet. Medicine (Suez Canal University

Dr.

Magdy Salah Moustafa Amer

Lecturer of Pharmacology Faculty of Vet. Medicine Suez Canal University Magdy Amer

Presented to the Faculty of Veterinary Medicine Suez Canal University 1996

177-0

Approval Sheet

This is to approve that the dissertation presented by: Waleed Fathy Khalilk to Faculty of Veterinary Medicine, Suez Canal University, entitled "Some pharmacokinetical studies of bephenium and pyrantel in lactating goats" for the degree of M.V.Sc. of pharmacology has been approved by the examining committee

Signature

Prof. Dr. Issa Mohamed Shehata
Professor of pharmacology
Faculty of Veterinary Medicine
Cairo University

J. Shakatil

Prof. Dr. Moustafa Abdel-Aziz Mohamed
Professor of pharmacology
Faculty of Veterinary Medicine
Tanta University (Kafer El-Shakh)

Prof.Dr. Mossad Gamal El-Din A. El-Sayed Professor of pharmacology

Faculty of Veterinary Medicine
Zagazig University (Banha branch)

"Supervisor"

Prof.Dr. Hatem Abdel-Khalek Gammaz

Professor of pharmacology Faculty of Veterinary Medicine Suez Canal University "Supervisor" 1.). A. Comaz

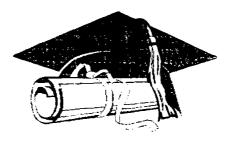
وكانَ فَضَلُ اللَّهِ عَلَيْكَ صَهَدَ وَاللَّهُ الْعَظيمِ

سوية النساء آبية ١١٢

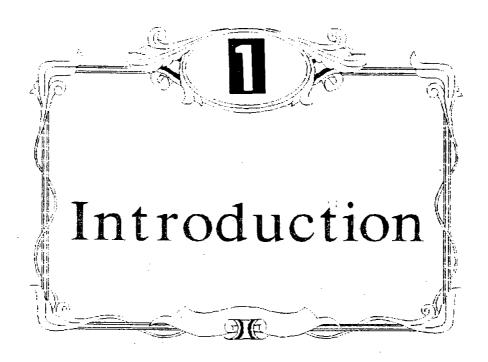
To my parents

Words can never really describe how much I appreciate what you did But let me try . . .

Mank!


CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
3. MATERIALS AND METHODS	17
3.1. Drugs	17
3.1.1. Bephenium hydroxynaphthoate	17
3.1.2. Pyrantel tartrate	17
3.2. Goats	18
3.2.1. Grouping of goats	19
3.3. Collection of samples	19
3.3.1. Blood samples	20
3.3.2. Urine samples	20
3.3.3. Milk samples	21
3.4. Analytical procedures	22
3.4.1. Assay of bephenium	22
3.4.1.1. Reagents and chemicals	22
3.4.1.2. Devices	23
3.4.1.3. Standard solutions and curves	23
3.4.1.4. Estimation procedures of	24
bephenium in biological fluids	25
3.4.2. Assay of pyrantel	25
3.4.2.1. Reagents and chemicals	25
3.4.2.2. Devices	26
3.4.2.3. Standard solutions and curves	26
3.4.2.4. Estimation procedures of	
pyrantel in biological fluids	27
3.4.3. Drug clearance	28
3.4.4. Assay of creatinine in plasma	
and urine	29
3.4.4.1. Reagents	29
3 4 4 2 Devices	20


	Page
3.4.4.3. Procedures	30
3.4.4.4. Creatinine clearance	30
3.4.5. Assay of urea in plasma and	
urine	31
3.4.5.1. Reagents	31
3.4.5.2. Devices	32
3.4.5.3. Procedures	32
3.4.5.4. Urea clearance	33
3.4.6. Assay of plasma transaminases	
activity	33
3.4.6.1. Reagents	33
3.4.6.2. Devices	34
3.4.6.3. Procedures	34
3.4.7. Assay of plasma alkaline	
phosphatase	35
3.4.7.1. Reagents	35
3.4.7.2 Devices	35
3.4.7.3. Procedures	35
3.4.8. Estimation of protein binding of	
the tested drugs	36
3.4.8.1. Procedures	37
3.5. Pharmacokinetic analysis	37
3.6. Statistical analysis	38
4. RESULTS	40
4. 1. Pharmacokinetical abbreviations.	40
4.2. Bephenium	41
4.2.1. Standard curve of bephenium	41
4.2.2. Concentration of bephenium in	
plasma, urine, and milk	41
4.2.3. Protein binding of bephenium	43
4.2.4. Effect of bephenium on some	
enzymes activities	44
..*. Tables and figures of behenium.	44
	7

	Page
4.3. Pyrantel	73
4.3.1. Standard curve of pyrantel	73
4.3.2. Concentration of pyrantel in	
plasma, urine and milk	73
4.3.3. Protein binding of pyrantel	75
4.3.4. Effect of pyrantel on some	
enzymes activities	75
..*. Tables and figures of pyrantel.	76
5. DISCUSSION	106
5.1. Bephenium	106
5.2. Pyrantel	112
6. SUMMARY AND CONCLUSION.	118
7. REFERENCES	121
8. ARABIC SUMMARY	

Thesis of pharmacology

Some pharmacokinetical studies of Bephenium and Pyrantel in lactating goats

1- INTRODUCTION

From the economic point of view, goats were among the first domestic animals kept by man for the production of meat, milk, skin and fibre. Although most of world population of approximately 400 million goats are mainly for meat production, in western countries, goats are mainly known as dairy animals, as lactation normally lasts for 8 to 9 months. In Egypt, goats considered from the most economically important animal specially in Sinai and other areas (Hassan, 1980). Moreover, as an experimental animal, goats are used as the model of lactating ruminants (Gall, 1964; Kessler, 1979; Larson, 1978) for its advantage of small size, docile temperament and quickly adapt to experimental conditions.

Generally, parasitic helminth infestations in rumminants are wide spread and cause many economic losses through the world (Anderson et al., 1976). Unfortunately, internal parasitism is the most common problem in goats (Fabiyi, 1973; Van Tonder, 1975). Nematodes such as Ostertagia, Haemonchus, Trichuris, Chabertia, Strongyloids and hook worm infestation causes considerable losses as decrease in both growth rate and milk production (Anon, 1973).

Bephenium hydroxynaphthoate and pyrantel tartrate as anthelmintic agents are widely used in veterinary medicine for prophylactic and treatment of many helminth infestations.

Bephenium hydroxynaphthoate was discovered by Copp et al., (1958). It belongs to the group of quaternary ammonium compounds. It is an effective anthelmintic against Nematodirus, Cooperia, Haemonchus and Trichostrongylus species (Chroust and Lax 1967).

Pyrantel tartrate is an effective anthelmentic agent, that belongs to tetrahydropyramidines. It was discovered by **Austin** et al., (1966). Pyrantel has a broad spectrum activity against a wide variety in gastrointestinal nematodes in sheep, pigs and cattle after adminstration of a single oral dose of 25 mg/kg body weight (b.wt.) (Cornwell and Jones, 1970).

Our goal was therefore, an attempt to explain certain pharmacokinetic aspects of these two anthelmintics as elimination of pyrantel and bephenium through milk and urine. Also, effects of these two drugs on activities of certain enzymes in goats were studied.