سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

RISK STRATIFICATION AFTER ACUTE MYOCARDIAL INFARCTION COMPARATIVE STUDY BETWEEN INVASIVE AND NON INVASIVE TECHNIQUE

Thesis submitted to **Faculty of Medicine Menufyia University**

In partial fulfillment for the requirement of MD Degree in cardiology

> By **Ghada Mahmoud Soltan** M.Sc Cardiology

> > **Supervisors**

Prof. Dr. Ali R. Abd El MEGID

Professor of Cardiology Ain Shams University

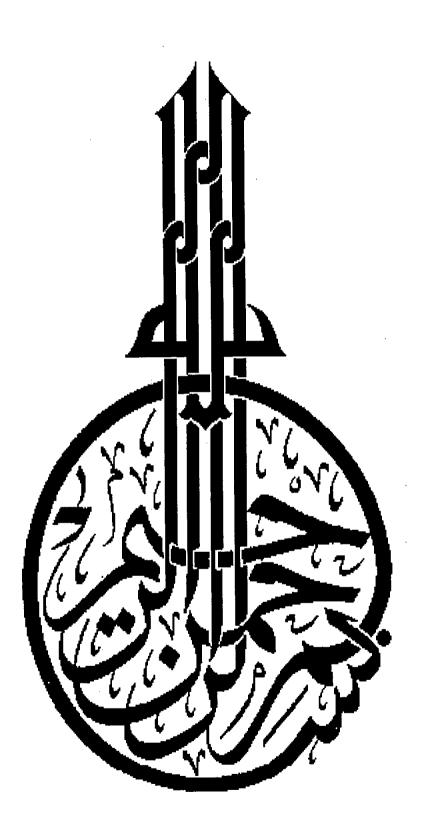
Prof. Dr. Amal M. Ayoub

Professor of Cardiology Ain Shams University

Prof. Dr. Ahmed A. Reda

Head of cardiology department **Assistant Prof. of Cardiology Menufyia University**

Prof. Dr. Said S. Montaser


Assistant Prof. of Cardiology Menufyia University

Menufyia University

1999

., ; • 100

ļ,

Acknowledgment

A would like to express my deepest gratitude and appreciation to Prof. Dr. Ali Ramzy Abd El Migid for his continuous guidance, supervision and support through out this study.

A would also like to express my sincere thankfulness and appreciation and deeply indebted to Prof. Dr. Amal El Siad Ayuob for persistent encouragement and support through out this study and for her ideas and giving me much of his effort and time in revision of this work also for her kind sympathy to me.

A wish to express my greatest thanks and deeply indebted to Dr. Ahmed Ashraf Reda for his guidance and his encouragement in this work.

A would like to express my deepest gratitude and appreciation to Prof. Dr. Said Shalaby Montaser for his continuous guidance, supervision and support through out this study.

A would also like to express my sincere thankfulness and appreciation and deeply indebted to Prof. Dr. Tarek Salah Khalil for his continuous guidance and support.

A will always be grateful to all the staff members and colleagues in department of Cardiology, Menofiuya University

GHADA MAHMOUD SOLTAN

List of Abbreviation

 Acute coronary ischaemic syndrome 	ACIS
Acute myocardial infarction	AMI
• Coronary artery disease	CAD
• Coronary care unit	CCU
• Electrocardiocardiogram	ECG
• Emergency department	ED
 Heart rate variability 	HRV
• Left ventricle	LV
• Left ventricular ejection fraction	LVEF
 Left ventricular end diastolic dimension 	LVEDD
 Left ventricular end systolic dimension 	LVESD
 Left ventricular fraction shortening 	LVFS
 Low dose dobutamine stress echocardiography 	LDDE
Myocardial infarction	MI
Signal average electrocardiogram	SAECG
 Two dimensional echocardiography 	2 D
 Wall motion abnormalities 	WMA
 Wall motion score index 	WMSI

Contents

Introduction		1
Aim of the work		5
Review of literature	\$ \	6
Risk stratification after AMI	F	6
Electrocardiographic assessment	€	12
Value of serum enzyme		17
Role of exercise stress test		<i>20</i>
Holter monitoring		35
Echocardiography		37
Cardiac catheterization		61
Subjects and Methods		71
Results	: .	87
Discussion		134
Study Limitation		152
Summary and conclusion		153
References		159
Arabic summary		£ -1

INTRODUCTION

Introduction

Risk stratification must begin when acute myocardial infarction is diagnosed (Peterson, et al 1997). Early identification of patients who are at increased risk of cardiac morbidity and mortality is of major clinical importance (Daniel, et. al.,1991).

Prognosis following AMI can be evaluated by various clinical parameters and laboratory tests (Krone, et al., 1993 and Gill, et al., 1996).

Although prognosis is related to several factors, infarct size is the most important. The major determinants of prognosis following AMI are related to the degree of LV dysfunction as evidenced by a depressed left ventricular ejection fraction and

extent of wall motion abnormalities, extent of residual jeopardized myocardium both in the distribution of the infarct related artery and, or in remote myocardium, and the arrhythmogenicity potential of the left ventricle.

Risk stratification by non-invasive modalities is well-established in patients surviving acute myocardial infarction. Thrombolytic treatment has improved the prognosis of patients with acute myocardial infarction through its potential to salvage viable myocardium at risk in the infarct zone, reduce infarct size, and improve left ventricular function. Viable but jeopardized myocardium supplied by a critical residual coronary stenosis can be at increased risk for further ischemic events and can adversely affect prognosis (Carlos, 1989).

The extent of jeopardized myocardium can be best evaluated by determination of extent and severity of induceable ischaemia by non invasive techniques and or extent