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SUMMARY

One of the most important subjects in General Relativity is the
singularities of space-times. Most exact solutions of the Einstein’s
field equations have singularities. Many space-time singularities are
recognized as divergence of the curvature towards the boundaries of
space-times as described by simple exact solutions, for example the
Friedmann solution and Schwarzschild solution. These considerations
do not guarantee that the occurrence of singularities in all the exact
solutions are always associated with the divergence of curvature. For
example, the components of the curvature tensor in the Taub-NUT
space-time are bounded, but this space-time is still singular. Various
exact solutions of the Einstein equations have been inspected in order
to formulate a good definition of a singularity which can be used in'a
reasonably straightforward way on sorts of examples that commonly
arise in General Relativity. Unfortunately, most of these definitions
encounter some difficults. Finally, Clarke [31] in his book ”the analy-
sis of space-time singularities” gave an appropriate definition for a
space-time to be singular. A space-time is singular if it contains an
incomplete geodesic (or more general curve) v such that there is no
extension for which v is extendible.

Singularities are not points of the physical space-time, but just imply
that in a maximal space-time some inextendible non-spacelike curve
end at a finit value of the (generalized) affine parameter.

Historically there have been several approaches to define the set
of singular points by considering them as a boundary to provide ex-
plicit boundary constructions for space-times. The first approach is
the so called geodesic-boundary {(g-boundary), given by Geroch {41].
It represents the limit points of all incomplete geodesics. The second
is the causal or c-boundary of Geroch, Kronheimer and Penrose [45].
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The most elegant approach is more general than the above notion,
it represents limit points of all incomplete curves. This construction
was performed by Schmidt [98] in the so called bundle boundary (b-
boundary).

The classification scheme proposed by Ellis and Schmidt [39] gives
the nature of these singularities. This scheme uses the behaviour
of the curvature tensor near the singularity to devide singularities
into quasi-regular singularities, nonscalar curvature singularities, and
scalar curvature singularities.

A difficult problem occurs when one tries to define a topologi-
cal structure of space-time at a singular point. Geroch [41] made
his construction by identifying various classes of incomplete time-
like geodesics. He pointed out that space-time together with its g-
boundary is a topological space. The problem in such a definition is
that there are many possible boundaries with no compell of physical
reason for choosing one instead of another, so it is not obvious how to
define a topology at a singular point. It was a common surprise when
the general construction of the b-boundary turned out that in both
Friedmann and Schwarzschild space-times the boundary points are
not Hausdorff separated from the corresponding space-time. The aim
of this thesis is to cure these pathologies by defining an appropaite
topology on the boundary of space-time.

This thesis contains five chapters :

In chapter 1, we give a mathematical formulation of General Rel-
ativity and we introduce some basic properties of manifolds.

In chapter 2, we demonstrate all attempts to define a singular
space-time and the difficulties which are encountered there to give a



- reasonable definition of a singular space-time. We also discuss in more
detail the constructions of the space-time boundaries in the sense of
Geroch (g-boundary) and in the sense of Schmidt (b-boundary). The
last section of this chapter is devided into two subsections. The first
is concerned with the strong curvature singularities, and the second
with the conformal singularities, where we proved that if v is an in-
complete null geodesic terminating at a conformal singularity of a
strongly causal space-time, then y can be reparametrized, in a neigh-
bourhood of the conformal singularity, by an affine parameter to give
a complete null geodesic.' The definition of a physical and unphysical
conformal singularity is given, and we have shown that the Friedmann
singularity is a physical singularity.

Chapter 3 is devoted to the study of differential spaces, which are
a natural generalization of differentiable manifolds. Some of the geo-
metrical properties of these spaces are given. To treat space-time
as a differential space rather than a differentiable manifold gives the
possibility to cure the classical singularity problem, and to regard the
singular boundaries of space-time as internal domains of a correspond-
ing differential space. |

In chapter 4, which is the core of this thesis, we give two possi-
bilities to define an appropriate topology on the boundaries of space-
times. These definitions explain the topology on the boundaries inde-
pendently of their construction in contrast to Schmidt’s b-boundary.
The idea of the first attempt is based on the idea of the g-boundary,
but it can be applied to more general situations with minor and ob-
vious modifications. The second attempt is concerned with the be-
haviour of the Jacobi fields at the boundary of space-time by exam-
ining what happens between nearby geodesics at the boundary. A
number of examples are given to illustrate these attempts.



In chapter 5, we treat two problems. The first one is the compu-
tation of the differential dimension of some well-known singularities
by using a local theory of differential spaces. It is shown that the
differential dimension of the interior Schwarzschild singularity is 4-
dimensional, while in the case of the closed Friedmann singularity it
is found to be 5-dimensional.

The second one is to glue together two Schwarzschild space-times in
their singularities. We have done this in order to discuss the behaviour
of radial null geodesics with zero angular momentum.



Chapter 1
INTRODUCTION

In this chapter we lay the foundation for a precise, mathematical for-
mulation of General Relativity introducing some basic properties of
manifolds and tensor fields. Basic manifold theory can be found in
an eminently digestible form in Brickell and Clark [12], Bishop and
Crittenden [5], and more advanced material is given in Kobayshi and
Nomizu [64]. Manifold theory for the use in physics can be found
in Martin [73]. Important references on the geometrical physics of
space-time are Hawking and Ellis [52] and Beem and Ehrlich [3].

In sec. 1.2 we sumarize some structures on a manifold. Sec. 1.3
will deal with the theory of presheaves and sheaves (for more detail,
see for example, Wells {110] and Bredon {11]). In sec. 1.4 Jacobi fields
are discussed. Finally, in sec. 1.5 we shall give a brief review of the
causal structure of space-time.

1.1 Differential Manifold Structure

Let X be a topological space with the Hausdorff property, that is any
two different points of X possess disjoint neighbourhoods. A topo-
logical space X is called n-dimensional topological manifold, if

9



every point p € X has a neighbourhood homeomorphic to R”. The
existence of a local homeomorphism between X and R" should be
understood in the following sense:

A pair (U,¢), where U is an open subset of X, and ¢ : U — FE a
homeomorphism onto an open subset E C R" is said to be a (local)
chart on the manifold X. By definition n is the dimension of the topo-
logical manifold. If p is a point of U then ¢(p) is a point of R", so ¢(p)
is an n-tuple of real numbers. Let the i** coordinate of ¢(p) be z*(p).
Then we have ¢(p) = (z!(p), ...,2"(p)). Since ¢ is continuous, each z*
is a real-valued continuous function defined on U. Furthermore, if we
have zi(p) = z'(q) (i = 1,..., n) for two points p, q of U, then p = q,
since ¢ is one to one. That is, the point of U is determined by the
n-tuple of real numbers (z!(p),...,z"(p)). (z!(p),...,z™(p)) is called
the system of local coordinates of the point p of U with respect
to the chart (U, ¢), and the n-tuple (z',...,2") of functions on U is
called the local coordinate system on (U, ¢).

An n-dimensional topological manifold M is covered by a family
{U,} of open sets U, homeomorphic to open sets in R™. Let e, be an
open set of R homeomorphic to U,, and let ¢, be a homeomorphism
from U, onto e,. We call the collection of charts, A = {(U,, ¢a)}
a coordinate neighbourhood system or an atlas. The U, are
named coordinate neighbourhoods.

Definition 1.1.1 An atlas A = {(Ua, ¢a)} of an n-dimensional topo-
logical manifold M is called a coordinate neighbourhood system
or atlas of class C", or a C" atlas, if A has the following property:
for any o and 3 such that U, N Uy is non-empty, the maps

80 %5 pa(UaNUp) = ¢p(Ua N Up), } (1.1.1)
—1 1.
Pa09p  pp(Ua NUs) = pa(Ua N Up)

from open subsets of R™ into open subsets of R" are of class C".
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