

Spirometric Assessment before and after Treatment of Prostatic Hyperplasia in Patients with Chronic Obstructive Pulmonary Disease

Thesis

Submitted for Partial Fulfillment of Master Degree in **Chest Diseases**

By

Abdel Hamid Mohammed Shawky Hiekal B.Ch, M.Sc

Under Supervision of

Prof. Aya Mohamed Mohamed Abdel Dayiem

Professor of Chest Diseases
Faculty of Medicine – Ain Shams University

Prof. Tarek Osman Elsayed

Professor of Urology Faculty of Medicine – Ain Shams University

Assist. Prof. Hala Mohamed Salem

Assistant Professor of Chest Diseases Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof.** Aya Mohamed Mohamed Abdel Dayiem, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Tarek Osman Elsayed**, Professor of Urology, Faculty of Medicine, Ain
Shams University, for his sincere efforts, fruitful
encouragement.

I am deeply thankful to Assist. Prof. Hala Mohamed Salem, Assistant Professor of Chest Diseases, Faculty of Medicine Ain Shams University, for her great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Abdel Hamid Mohammed Shawky Hiekal

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	7
Introduction	1 -
Aim of the Work	15
Review of Literature	
• Chronic Obstructive Pulmonary Disease	16
Spirometry	31
Benign Prostatic Hyperplasia	45
 Cholinergic Receptors Map in Airways and Prosta 	
Patients and Methods	78
Results	105
Discussion	125
Summary	
Conclusion	
Recommendations	
References	
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Factors influencing survival in pa	
Table (2):	Spirometric classification of the seve chronic obstructive pulmonary diseas	
Table (3):	Modified medical research council dy scale.	
Table (4):	Lung volumes	35
Table (5):	Showing the demographic distribut studied subjects and the degree of se of obstruction	everity
Table (6):	Showing the mean prostatic sizes be group A and group B, and mean n between the two groups	nMRC
Table (7):	Showing the relationship between groups mMRC and patients's the two groups	age in
Table (8):	Showing demographic distribution two groups according to the graphic criteria of IPSS	rading
Table (9):	Showing the relation between prostar and age in the two groups:	
Table (10):	Showing the mean values of spiror assessment of patients in two grouthe first spirometry done before st treatment for symptomatic by prostatic hyperplasia	ips in arting penign
Table (11):	Showing the mean values of spiror assessment of patients in two growthe second spirometry done after st treatment for symptomatic k prostatic hyperplasia by one month	ips in arting penign

Tist of Tables cont...

Table No.	Title	Page No.
Table (12):	Showing comparison between spirometric values between spirometry (before starting treatme symptomatic benign prostatic hypernand the second spirometry(done after month of starting treatment) in grapatients(on tamsulosin only)	first ent for plasia) er one oup A
Table (13):	Showing comparison between spirometric values between spirometry (before starting treatmesymptomatic benign prostatic hypergand the second spirometry(done after month of starting treatment) in grapatients(on tamsulosin and sofenacing	first ent for plasia) er one oup B
Table (14):	Showing comparison between the groups in percent of change be values of spirometries done before after treatment of symptomatic by prostatic hyperplasia	tween e and oenign
Table (15):	Showing comparison between the groups in absolute change between of spirometries done before and treatment of symptomatic benign prohyperplasia	values after ostatic

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The refined ABCD assessment tool	24
Figure (2):	Pharmacological treatment by GOLD	grade 30
Figure (3):	Screen for spirometry readouts	33
Figure (4):	Lung volumes	34
Figure (5):	Normal Values for FVC, FEV1 and 75%	
Figure (6):	Normal values for peak expirate (PEF).	-
Figure (7):	Obstructive disease by spirometry: all flow rates are diminished, exprolongation predominates	xpiratory
Figure (8):	Restrictive disease by spirometry: volume curve is narrowed bed diminished lung volumes, but the generally the same as in normal volumes.	ause of shape is
Figure (9):	Abdominal sonographic presentation	of BPH 96
Figure (10):	Showing digital rectal examination	96
Figure (11):	American urological association symptom score index questionnaire.	
Figure (12):	Showing demographic distribution in of studied subjects.	-
Figure (13):	Showing demographic distribution in of studied subjects.	-
Figure (14):	Showing spirometries' severity of ob in group A of studied subjects	
Figure (15):	Showing spirometries' severity of ob in group B of studied subjects	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (16):	Comparison between mean I starting tamsulosin and mean starting tamsulosin by one month of patients	FVC after h in group A
Figure (17):	Comparison between mean F starting tamsulosin and mean starting tamsulosin by one month of patients.	FEV1 after h in group A
Figure (18):	Comparison between mean per FEV1 before starting tamsulosist percentage of FEV1 after starting by one month in group A of patients.	n and mean g tamsulosin
Figure (19):	Comparison between mean I starting tamsulosin and mean starting tamsulosin by one month of patients.	FVC after h in group B
Figure (20):	Comparison between mean F starting tamsulosin and sofenaci FEV1 after starting tamsulosin a by one month in group B of patier	n and mean nd sofenacin
Figure (21):	Comparison between mean per FEV1 before starting tamsulosist percentage of FEV1 after starting by one month in group B of patients.	n and mean g tamsulosin

Tist of Abbreviations

Abb.	Full term
5 AR	5 alpha reductase
Ach	-
	Adenosine momophosphate
	American Thoracic Society
	American Urological association
	Acute urinary retention
BD	-
	BPH impact index
	Bladder outlet obstruction
	Benign prostatic enlargement
	Benign prostatic hyperplasia
	Cyclic Adenosine momophosphate
	COPD assessment test
COPD	Chronic obstructive pulmonary disease
<i>CRP</i>	
<i>CYP</i>	Cytochrome p450
DHT	Dihydrotestosterone
DRE	Digital rectal examination
<i>ERS</i>	European Thoracic Society
<i>ERV</i>	Expiratory reserve volume
FEF max	Maximum instantaneous flow achieved
FEF	Forced expiratory flow
FEV1	Forced expiratory volume in first second
FIF	Forced inspiratory flow
FRC	Functional residual capacity
FVC	Forced vital capacity
<i>GnRH</i>	Gonadotropin releasing hormone
GOLD	Global initiative for chronic obstructive lung disease

Tist of Abbreviations cont...

Abb.	Full term
IC.	Inspiratory capacity
	Inhaled corticosteroids
<i>IL</i>	
	International prostate symptomes score
IQR	
<u> </u>	Inspiratory reserve volume
	Long acting beta-2 agonist
	Long acting antimuscarinics
	Lower urinary tract symptomes
	Maximal (mid-) expiratory flow
	Modified British Medical Research council
	Maximal voluntary ventilation
<i>OAB</i>	Overactive bladder
PaO2	Partial Pressure of arterial Oxygen
PCV13	Pneumococcal conjucate vaclcine
<i>PEF</i>	Peak expiratory flow
PFTs	Pulmonary function tests
PI	$ Phosphate\ inositol$
PPSV23	$ P neumo coccal poly saccharide\ vac l cine$
<i>PSA</i>	Prostate surface antigen
PVR	Post void residual urine volume
<i>QoL</i>	Quality of life
<i>RCT</i>	$ Randomized\ controlled\ trial$
<i>RV</i>	Residual volume
<i>SABA</i>	Short acting beta-2 agonist
<i>SAMA</i>	Short acting antimuscarinics
<i>SD</i>	Standard deviation
SPI	Symptomes problem Index
<i>SPSS</i>	Statistical package for social science

Tist of Abbreviations cont...

Abb.	Full term
SRaW	Specific resistance if airway
TAUS	Transabdominal ultrasound
<i>TLC</i>	Total lung capacity
TRUS	Transrectal ultrasound
TUIP	Transurethral incision of the prostate
<i>TUMT</i>	Transurethral microwave thermotherapy
TUNA	Transurethral needle ablation of the prostate
<i>TURP</i>	Transurethral resection of the prostate
<i>TUVP</i>	Transurethral vaporization of the prostate
TV or Vt	Tidal volume
TVP	Transurethral electrovaporization of the prostate
Va	Alveolar gas volume
<i>VC</i>	Vital capacity
<i>VIP</i>	Vasoactive intestinal peptide
	Actual volume of the lung

Introduction

pulmonary disease (COPD), √hronic • obstructive predominantly prevalent in men, is a chronic inflammatory disorder of the airway and lungs. COPD is one of the most prevalent diseases and the third leading cause of death globally (World Health Organization, 2006). Patients with COPD usually present with progressive dyspnoea, shortness of breath and productive cough. Moreover, they frequently experience various comorbid conditions, such as cardiovascular disease, metabolic disorder, dementia and skeletal muscle dysfunction (Negewo et al., 2015; Liao et al., 2015), These comorbidities might have a significant effect on patient outcome (Smith et al., 2014) COPD is currently recognised as a chronic systemic inflammatory state because the inflammation involves the lung and may contribute to various extrapulmonary effects (Agusti et al., 2008; Fabbri et al., 2007).

Benign prostatic hyperplasia (BPH) is a common medical condition in older male populations. Approximately 14% of men aged 40–49 years are estimated to have BPH, and the prevalence increases to >50% in men aged 60 years and over (*Garraway et al., 1991; Thorpe, 2003*) Patients with BPH usually present with lower urinary tract symptoms (LUTS), such as urinary urgency and retention, considerably affecting the quality of their lives. In addition to ageing, other reported predisposing factors for BPH are metabolic syndrome, obesity

and reduced physical activity (De Nunzio et al., 2012; Parsons et al., 2013; Sea et al., 2009).

Although COPD and BPH are associated with chronic inflammation of the airway and prostate, respectively (Shaw et al., 2014; Bostanci et al., 2013) and are common disorders in ageing male populations, the relationship between these two conditions has rarely been explored. In addition, previous studies have suggested that COPD and BPH might share an underlying pathophysiology. For example, higher levels of interleukin (IL-6) and C reactive protein (CRP) in serum or sputum were observed in both patients with COPD and BPH. (Grubek-Jaworska et al., 2012; Karadag et al., 2008; Schenk et al., 2010) Moreover, while patients with COPD appear to be more physically inactive than their counterpart without COPD (Spruit et al., 2015) studies have suggested that level of physical activity was negatively associated with BPH risk. This implies that physical inactivity among patients with COPD might also be a contributing factor for BPH development (*Parsons et al.*, 2008).

Lower urinary tract symptoms (LUTS) in men with benign prostatic hyperplasia (BPH) comprises of storage symptoms (frequency, urgency, nocturia, and urinary voiding symptoms incontinence) and (weak stream, intermittency, hesitancy, straining and terminal dribbling) (Fitzpatrick et al., 2006; Abrams et al., 2002). The storage sub-classification category of LUTS is same as the overactive

bladder syndrome (OAB), which has been previously defined by the International Continence Society (ICS) as 'urgency, with or without urge incontinence, usually with frequency and nocturia (Abrams et al., 2002).

AIM OF THE WORK

The aim of study was to Assess the effect of medical treatment of symptomatic prostatic hyperplasia in pulmonary fuction tests of patients with chronic obstructive pulmonary disease, and spirometric variables before and after treatment.