

Influence of Silicone Oil Tamponade after Vitrectomy on Intraocular Pressure

Thesis

Submitted for Partial Fulfilment of Master Degree in **Ophthalmology**

Presented by

Amany Aboelmagd Mohamed Tawfik

M.B.B.CH
Faculty of Medicine, Cairo University

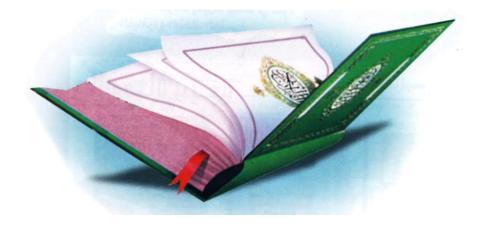
Supervised by

Prof. Dr. Negmeldin Helal Abdallah

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Prof. Dr. Lamia Salah Elewa

Professor of Ophthalmology Faculty of Medicine, Ain Shams University


Dr. Noureldin Hussein

Lecturer of Ophthalmology Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University
Cairo-Egypt
2019

بسم الله الرحمن الرحيم

وقُل اعْمَلُوا فَسَيْرَكَى اللهُ عَمَلُوا فَسَيْرَكَى اللهُ عَمَلُوا فَسَيْرَكَى اللهُ عَمَلُوكُ وَالمُؤْمِنُونَ عَمَلُكُ مُ وَمَرَسُولُهُ وَالمُؤْمِنُونَ عَمَلُكُ مُ وَمَرَسُولُهُ وَالمُؤْمِنُونَ

صدق الله العظيم [سورة: التوبة - الآية: ١٠٥]

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Megmeldin Helal**Abdallah, Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr. Lamia Salah Elewa**, Professor of Ophthalmology, Faculty of Medicine,
Ain Shams University, for her sincere efforts, fruitful
encouragement.

I am deeply thankful to **Dr. Moureldin Hussein**, Lecturer of Ophthalmology, Faculty of Medicine, Ain Shams University, for his great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Amany Aboelmagd Mohamed Jawfik

List of Contents

Title Page No.
List of Tables 5
List of Figures6
List of Abbreviations9
Introduction 1 -
Aim of the Work
Review of Literature
• Anatomy
 Physiology of Aqueous Humor and Vitreous Body
■ Intraocular Pressure
Silicone Oil
• Vitrectomy
Silicone Induced Glaucoma
Patients and Methods
Results83
Discussion
Summary
Conclusion
References
Arabic Summary

List of Tables

Table No.	Title	Page No.
Table (1):	Indication of vitrectomy in our subje	ects:75
Table (2):	Description of studied patients:	83
Table (3):	IOP pre and post operative:	87
Table (4):	logMAR visual acuity pre postoperative	
Table (5):	Comparison between phakic pseudophakic regarding IOP	
Table (6):	Comparison between phakic pseudophakic regarding logMAR acuity.	visual
Table (7):	Comparison between RD and regarding IOP	
Table (8):	Comparison between RD and regarding logMAR visual acuity	
Table (9):	Comparison between patients medical treatment and other with according to the lens state and diagram.	no need
Table (10):	Comparison between pre and operative IOP in patients needed treatment:	medical

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Anatomy of anterior and posterior cha	amber13
Fig. (2):	Anatomy of angle of anterior chamber	·14
Fig. (3):	Anterior chamber angle and depicting the concept of the limbus	•
Fig. (4):	The three layers of the trabecular mes	shwork16
Fig. (5):	Vitreous cavity relations	18
Fig. (6):	The left optic nerve and the optic trac	ts21
Fig. (7):	ON within and adjoining eyeball	22
Fig. (8):	Schematic diagram of physiology of a humor	
Fig. (9):	Circulation of Aqueous Humor	30
Fig. (10):	Flow of vitreous humor	31
Fig. (11):	Open-Angle Glaucoma	34
Fig. (12):	Angle-Closure Glaucoma	35
Fig. (13):	Physical principal of GAT	36
Fig. (14):	Goldman applanation tonometer	37
Fig. (15):	Applanation pressure measurement	37
Fig. (16):	Low intraocular pressure before t point is reached will result in this ima	
Fig. (17):	High intraocular pressure will result image	
Fig. (18):	This is the correct end point - the inner of the rings are just touching	•

Tist of Figures cont...

Fig. No.	Title Pa	ge No.
Fig. (19):	A schematic representation of measurement with Goldman applanationometer	tion
Fig. (20):	20-gauge pars plana vitrectomy pseudophakic eye	in
Fig. (21):	Image of posterior fundus during pars plus vitrectomy	
Fig. (22):	Bubble of Silicone oil in the Ante chamber	
Fig. (23):	Mechanisms of secondary glaucoma follow the silicone oil tamponade	ving
Fig. (24):	'Inverted hypopyon', emulsified oil in Anterior chamber	
Fig. (25):	Goldman applanation tonometer. Sy made	
Fig. (26):	B scan showing organized vitre hemorrhage	eous
Fig. (27):	B scan of retinal detachment	
Fig. (28):	B scan of vitreous hemorrhage	
Fig. (29):	Silocone oil 1000cs	
Fig. (30):	IOP measurement, HAAG-STREIT ATS	
J	Swiss made.	
Fig. (31):	Sex percentage	85
Fig. (32):	Eye involvement.	85
Fig. (33):	Lens state	86
Fig. (34):	Indication for vitrectomy	86
Fig. (35):	IOP pre and postoperative	88
Fig. (36):	Demographic profile of IOP pre postoperative	
Fig. (37):	logMAR visual acuity pre and postoperation	

Tist of Figures cont...

Fig. No.	Title	Page No.
Fig. (38):	Demographic profile of logMAR visual pre and postoperative	-
Fig. (39):	Comparison between phakic pseudophakic regarding IOP	
Fig. (40):	Demographic profile for Comparison by phakic and pseudophakic regarding IC	
Fig. (41):	Comparison between phakic pseudophakic regarding logMAR acuity	visual
Fig. (42):	Demographic profile for Comparison by phakic and pseudophakic regarding ly visual acuity	oetween ogMAR
Fig. (43):	Comparison between RD and PDR res	
Fig. (44):	Demographic profile for Comparison b RD and PDR regarding IOP	etween
Fig. (45):	Comparison between RD and PDR relogMAR visual acuity.	
Fig. (46):	Demographic profile for Comparison be RD and PDR regarding logMAR acuity	etween visual
Fig. (47):	Medical treatment according to the state	ne lens
Fig. (48):	Medical treatment according t diagnosis.	o the

Tist of Abbreviations

Abb.	Full term
AC	Anterior chamber
	Adenosine diphosphate
	Adenosine triphosphate
	Perfluoropropane gas
	Central corneal thickness
	Second cranial nerve
	Goldman applanation tonometer
	Intraocular pressure
	Intraocutar pressure Intravenous
	Microvitreoretinal
	Molecular weight
	Polydimethyl siloxane
	Proliferative diabetic retinopathy
	Perfluorocarbon liquid
	Peripheral irodetomy
	Pars plana vitrectomy
<i>PT</i>	Prothrombin time
<i>PVR</i>	Proliferative vitreoretinopathy
<i>ROSO</i>	Removal of silicone oil
<i>RPE</i>	Retinal pigment epithelium
<i>SD</i>	Standard deviation
SF6	Sulfur hexafluoride gas
	Specific gravity
	Silicon-oxygen bond
	Silicone oil
	Silicone oil injection
	Sodium dependant vitamin C transporter 2
	Trabecular meshwork
	Vitreous infusion suction cutter

m

Introduction

Claucoma is a complicated disease in which damage to the optic nerve leads to progressive, irreversible vision loss. Glaucoma is the second leading cause of blindness (*Weinreb et al.*, 2004).

Risk factor for glaucoma include increased IOP greater than 21 mmHg, family history, high blood pressure and obesity. However some may have high IOP for years and never develop damage (*Mantravadi et al.*, *2015*). Conversely, optic nerve damage may occur with normal pressure, known as normal tension glaucoma.

There are several different types of glaucoma, including open angle glaucoma and acute angle closure glaucoma. The treatment of glaucoma may include medication, surgery or laser surgery (*Mi et al.*, 2014).

Vitrectomy is an operation to remove the vitreous gel from the eye. Common indications include retinal detachment, vitreous hemorrhage, macular hole and intraocular foreign body (*Duker et al.*, 2013).

Silicone oil is a synthetic polymer made of repetitive (Si-O units) and is chemically similar to silicone rubber, except that silicone oil polymer chains are not cross-linked and are shorter than those of silicone rubber (*Krumpfer et al.*, 2011). Silicone

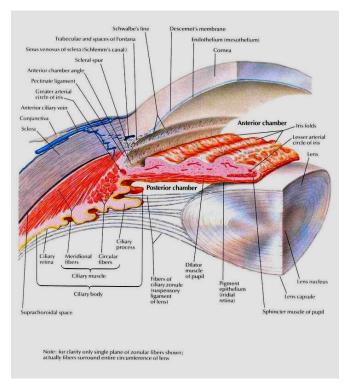
oil was first introduced by Cibis in 1962 for vitreoretinal surgery (Jabbour et al., 2018).

Today silicone oil is an important adjunct for internal tamponade in a wide variety of vitreoretinal surgeries. Silicone oil injected in the vitreous cavity ensures stability of the eye ball, restores the initial intraocular anatomical relations and slows down further proliferation, it is well tolerated and because of its transparency it enables easier postoperative visualization of the posterior segment (*Rhodes et al.*, 2002). Apart from the possible development of band keratopathy and corneal decompensation one of the major side effects of the silicone oil is secondary IOP elevation (Güngel et al., 2005).

Secondary glaucoma can occur at any time in the postoperative period and may range from mild and transient to severe and sustained IOP spikes, resulting in loss of vision (Jindal et al., 2009).

developing Mechanisms responsible for secondary glaucoma are pupillary block (*Tarongoy et al.*, 2009), emulsified silicone oil bubbles in the chamber angle (LA HEIJ et al., 2001), angle closure by anterior synechial, inflammation, rubeosis iridis and idiopathic IOP rise after silicone oil instillation. The most of these cases are well controlled by anti-glaucoma therapy, whereas the minority of patients require evacuation of the silicone oil to normalize IOP and the most refractory cases mandate penetrating filtration surgery in order to stabilize the IOP in the long term (Al-*Jazzaf et al.*, 2005).

AIM OF THE WORK


he aim of this study is to determine the possible influence of the silicone oil (1000 cs) tamponade after vitrectomy on the intraocular pressure which is a major risk factor for developing secondary glaucoma and the effect of starting with anti-glaucoma therapy during the first 6 months postoperatively.

Chapter 1

ANATOMY

Anatomy of angle of anterior chamber of the eye:

Fig. (1): Anatomy of anterior and posterior chamber *(www.sciencedirect.com)*.

The anterior chamber of the eyeball is a small cavity lying between the cornea and the iris. It is filled with aqueous humor. Its volume is about 0.2 ml. Anterior chamber bounded anteriorly by the cornea and a small part of the sclera, posteriorly bounded by the anterior surface of the iris, anterior surface of the lens through the pupil and a part of the ciliary body (*McKinney et al.*, 2018).

At the peripheral margin of the anterior chamber is the angle where the trabecular meshwork is located with its channels for the drainage of the aqueous humor (*Goel et al.*, 2010).

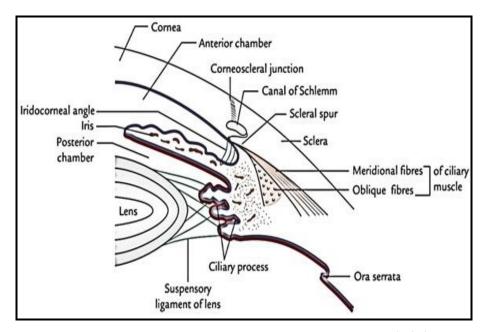
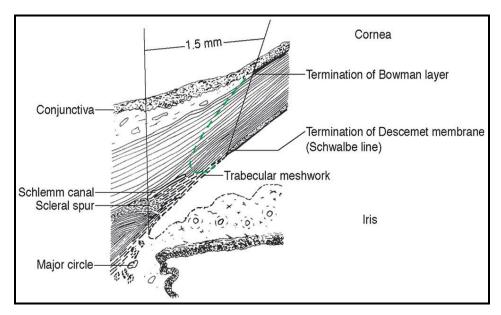



Fig. (2): Anatomy of angle of anterior chamber (www.earthslab.com).

The angle of the anterior chamber cannot be seen by direct inspection because of the opaque sclera and the corneoscleral limbus. Also light rays arising from the angle undergo total internal reflection (*Pavan-Langston*, 2008). Gonioscopy eliminates the corneal curve and allow light to be reflected from the angle (*Quek et al.*, 2011).

Fig. (3): Anterior chamber angle and limbus, depicting the concept of the limbus. *Solid lines* represent the limbus as viewed by pathologists; the *green dotted line* represents the limbus as viewed by anatomists (*Hogan et al.*, 1971).

Anatomical structure of the angle by Gonioscopy: Scleral sulcus and scleral spur:

Limbus is the transition zone between the cornea & sclera. On the inner surface of the limbus, there is an indentation or groove, which is known as the scleral sulcus. This scleral sulcus has a sharp posterior margin- the scleral spur & a sloping anterior wall which extends to the peripheral cornea. The ciliary body is attached to the scleral spur and there exists a potential space, the supra ciliary space, between ciliary body and the sclera. Iris inserts into the anterior side of the ciliary body and the part of the ciliary body between root of iris & scleral spur is known as ciliary band.