

Use of Spirometry as an Objective Tool in Diagnosis and Management of Airway Obstruction among Patients Diagnosed and Treated as COPD or Asthma

Thesis

Submitted for Partial Fulfillment of Master Degree in **Chest Diseases**

Presented by

Mahmoud Mohamad Yousry Mohamad

M.B.B.Ch Ain Shams University

Supervised by

Prof. Mohammad Abdel- Sabour Faramawy

Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Prof. Hesham Atef Abdelhalim

Professor of Chest Diseases Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Mohammad Abdel-Sabour Faramawy**, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Wesham Atef**Abdelhalim, Professor of Chest Diseases, Faculty of

Medicine, Ain Shams University, for his sincere

efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Mahmoud Mohamad Yousry Mohamad

Tist of Contents

Title	Page No.
List of Tables	_
List of Figures	7
List of Abbreviations	9
Introduction	1 -
Aim of the Work	13
Review of Literature	
COPD Review	14
■ Bronchial Asthma Review	77
Spirometry	128
Patients and Methods	151
Results	157
Discussion	167
Summary	178
Conclusion	181
Recommendations	182
References	183
Arabic Summary	

List of Tables

Table No.	Title	Page	No.
Table (1):	Key Indicators for Considerin	_	36
Table (2):	Modified Medical Research Co Questionnaire for Assessing the Se of Breathlessness	verity	44
Table (3):	Classification of severity of a limitation in COPD (Based on bronchodilator FEV ₁)	post-	45
Table (4):	COPD and its Differential diagnosis		51
Table (5):	Keys of Non- pharmacological treat of COPD		56
Table (6):	Assessment of COPD Exacerba Signs of Severity		67
Table (7):	Management of Severe but Not Threatening Exacerbations*		68
Table (8):	Potential Indications for hospitalizassessment		69
Table (9):	Therapeutic Components of Ho Management		70
Table (10):	Items to assess at follow-up visit weeks after discharge from hospit exacerbations of COPD	al for	75
Table (11):	Factors influencing the developmen expression of asthma		80
Table (12):	Asthma susceptibility genes:		82
Table (13):	Features of airway remodeling:		92

Tist of Tables cont...

Table No.	Title	Page No.
Table (14):	Asthma phenotypes according to cytokine profiles divided into Th2 and Th2-low asthma	2-high
Table (15):	Diagnostic criteria for asthma in a adolescents, and children 6–11 years	•
Table (16):	Spirometric measures in asthma, of and asthma-COPD overlap	
Table (17):	Low, medium and high daily dos inhaled corticosteroids	
Table (18):	Factors that increase the risk of ast related death	
Table (19):	Classification of severity of a limitation in COPD (Based on bronchodilator FEV1)	post-
Table (20):	Hutchinson terms and recent term lung volumes	
Table (21):	Descriptive data of all studied patier	nts:159
Table (22):	Drugs used by patients:	160
Table (23):	Assessment of severity of sympton mMRC, CAT and ACT score:	•
Table (24):	Medications and classification of second COPD and bronchial asthma paties	v
Table (25):	Comparison between provisional final diagnosis after spirometry:	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Annual decline in airway functions susceptible smokers and effections smoking cessation	ects of
Figure (2):	Pathogenesis of COPD	28
Figure (3):	Diagram of the pathogenesis pathophysiology of COPD	s and
Figure (4):	New approach of combined assessment	
Figure (5):	Pharmacological treatment of COI	PD58
Figure (6):	Pathogenesis of bronchial (Airway effect)	
Figure (7):	The Asthmatic Airways	93
Figure (8):	Immune and inflammatory mechand asthma progression	
Figure (9):	Diagnostic flowchart for clinical presentation of brasthma	onchial
Figure (10):	Decision tree for the patient with a	
Figure (11):	Self-management of worsening in adults and adolescents with a asthma action plan	written
Figure (12):	Management of asthma exacerbate primary care (adults, adole children 6–11 years)	tions in escents,
Figure (13):	Management of asthma exacerbate acute care facility, e.g. emodepartment	tions in ergency
Figure (14):	Normal spiromety and typical with obstructive changes.	patient

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (15):	A gasometer from A Man Chemistry, p. 82, by William Brande, 1819, published by J. Albermarle Street, London	Thomas Murray,
Figure (16):	John Hutchinson's spirometer fr the Capacity of the Lungs and Respiratory Functions with a Establishing a Precise and Easy Detecting Disease by the Spirome	om "On on the View of Way of
Figure (17):	Water sealed spirometer. U.S. 26754, by Augustus Eckert, of Ohio, filed in 1860	Dayton,
Figure (18):	A.P. Barnes' spirometer advert from The Herald of Health, Jan. 93.	1875, p.
Figure (19):	Boudin's spirometer from Brothers, Leon & Jules, Equipment Catalog, 1905, p. 380.	Rainal Medical 146
Figure (20):	Spirometry, circa 1955	
Figure (21):	Spirometry 1969	148
Figure (22):	Spirometry, National Cylinder Pulmonary Function Indicator, 19	
Figure (23):	Spirometry, Collins S-520, 1984	
Figure (24):	Spirometerics 4000, 1990's	
Figure (25):	A Koko Legend Spirometer	
Figure (26):	(Spirolab III spirometer) (Spro ID:TUK-MIR009, made by MIR, ITALY)	lab III: ROME -
Figure (27):	Comparison between provision final diagnosis after spirometry.	al and

Tist of Abbreviations

Abb.	Full term
\overline{AATD}	Alpha-1 antitrypsin defeciency
	Arterial blood gases
	American college of chest physicians
	American college of physicians
	Asthma control test
	Acute exacerbation of Chronic obstructive
	pulmonary disease
<i>AERD</i>	Aspirin Exacerbated Respiratory Disease
	Asthma exacerbations
ATS	American respiratory society
<i>BHR</i>	Bronchial hyperesponsivness
<i>BS</i>	Bronchial thermoplasty
	COPD Assessment Test
<i>CCQ</i>	COPD Control Questionnaire
CD4	Cluster Of Differentiation 4
CD8	Cluster Of Differentiation 8
<i>COPD</i>	Chronic obstructive pulmonary disease
<i>CXR</i>	Chest X-ray
<i>DALYs</i>	Disability-Adjusted Life Years
<i>DLco</i>	Diffusing capacity of lung for carbon
	monoxide
	Emergency department
	Exercise induced asthma
	European respiratory society
	Forced expiratory volume in 1 second
FLG	
	Functional Residual Capacity
	Forced vital capacity
	Gastroesophageal reflux
	Global Initiative for Athma
<i>GOLD</i>	Global Initiative for Chronic Obstructive
	Lung Disease
<i>ICS</i>	Inhaled corticosteroid

Tist of Abbreviations cont...

Abb.	Full term
IEM	To tour Course
IFN	
_	. Immunoglobulin E
<i>IL</i>	
<i>ISAAC</i>	. International study of asthma and allergies in childhood
LARA	. Long acting Beta 2 agonist
	Long acting muscarinic antagonist
	. Leukotriens receptor antagonist
<i>MMP12</i>	. Matrix metalloproteinase 12
mMRC	. Modified British Medical Research Council
	. Non invasive ventilation
<i>Nrf</i> 2	. Nuclear factor erythroid 2-related factor 2
OCS	. Oral corticosteroids
<i>OSHA</i>	. Occupational safety and health
	administration
<i>PEF</i>	. Peak expiratory flow
<i>PFT</i>	. Pulmonary function test
<i>RV</i>	. Rhinovirus
<i>SABA</i>	. Short acting Beta2 agonist
<i>SAMA</i>	. Short acting muscarinic antagonist
<i>SARP</i>	. Severe Asthma Research Program
<i>SPT</i>	. Skin prick test
<i>TLC</i>	. Total Lung Capacity
	. Tumor necrosis factor

Introduction

Chronic obstructive pulmonary disease (COPD) is a common, preventable and treatable disease that is characterized by persistent respiratory symptoms and airflow limitation that is due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles and gases (GOLD, 2017).

Asthma is a heterogeneous disease, usually characterized by chronic airway inflammation. It's defined by the history of respiratory symptoms such as wheeze, shortness of breath, chest tightness and cough that vary over time and in intensity, together with variable expiratory airflow limitation (GINA, 2017).

Spirometry is essential for the assessment of patients with suspected chronic disease of the airways. It must be performed at either the initial or subsequent visit if possible before and after a trial of treatment. Early confirmation or exclusion of the diagnosis of chronic airflow limitation may avoid needless trial of therapy, or delays in initiating other investigations (*GINA*, *2017*).

The diagnosis of COPD should be considered in any patient who has the following: symptoms of cough, sputum production, or dyspnea, or history of exposure to risk factors of the disease (exposure to cigarettes, and/or occupational or

environmental pollutants). The diagnosis requires spirometry; a post-bronchodilator forced expiratory volume in one second (FEV1)/ forced vital capacity (FVC) ≤0.7 confirms the presence of airflow limitation that is not reversible (Celi et al., 2004).

Screening spirometry influences physicians' diagnosis of airflow obstruction and management plans especially in patients with moderate to severe obstruction (Robert. *2005*). Misdiagnosis of COPD or Asthma leads to inadequate management of patients and to escalating healthcare costs. An early and accurate diagnosis can help to ensure optimal and costeffective management of patient care (Kuebler et al., 2008).

Objective confirmation of airway obstruction is essential in preventing misdiagnosis in frequent severe exacerbators of clinically diagnosed asthma and COPD. Spirometry utilization is strongly associated with a reduced risk of misdiagnosis (Jain et al., 2015).

AIM OF THE WORK

o assess use of spirometry as an objective tool in diagnosis and management of patients treated of obstructive lung diseases (Asthma and COPD).

Chapter 1:

COPD REVIEW

Definitions:

Chronic obstructive pulmonary disease (COPD) is a common, preventable and treatable disease that is characterised by persistent symptoms and airflow limitation that is due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles or gases (GOLD, 2018).

Chronic obstructive pulmonary disease (COPD) refers to a group of diseases that cause airflow blockage and breathing-related problems. It include chronic bronchitis, emphysema, and in some cases asthma (*Centers for Disease Control and Prevention*, 2015).

COPD is characterized by airflow obstruction that is not fully reversible. The airflow obstruction does not change markedly over several months and is usually progressive in the long term. COPD is predominantly caused by smoking. Other factors, particularly occupational exposures, may also contribute to the development of COPD. Exacerbations often occur, where there is a rapid and sustained worsening of symptoms beyond normal day-to-day variations (*Nice*, 2010).

Asthma and chronic obstructive pulmonary disease (COPD) are traditionally recognized as distinct diseases. However, the difference between the two is not always clear. Patients with severe asthma may present with fixed airway obstruction, and patients with COPD may have hyperresponsiveness and eosinophilia. Recognizing and understanding these overlapping features, may offer new insight into the mechanisms and treatment of chronic airway inflammatory diseases (*Kim and Rhee*, 2010).

Burden of (COPD)

Epidemiology: COPD is a leading cause of morbidity and mortality worldwide and results in an economic and social burden that is both substantial and increasing. COPD prevalence, morbidity, and mortality vary across countries and across different groups within countries. COPD is the result of cumulative exposures over decades. Often, the prevalence of COPD is directly related to the prevalence of tobacco smoking, although in many countries, outdoor, occupational and indoor air pollution, are major COPD risk factors. The prevalence and burden of COPD are projected to increase in the next decades due to frequent exposure to risk factors and the aging of the world's population (GOLD, 2018).

Prevalence:

Approximately 65 million people have moderate-to-severe COPD (*WHO*, 2015).