سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

بنيه النوالجينم

وَما أُوتِيتُم مِنَ العِلمِ إِلاَ قَلِيلاً

صدق الله العظيم

B NY TV.

CHEMICAL REACTIVITY OF SOME VINYLIC KETONES TOWARDS DIFFERENT NUCLEOPHILES

A Thesis
Submitted to the Faculty of Science
Alexandria University
In Partial Fulfillment for the Degree of
Master of Science

By

AZIZA ABD EL-FATTAH MOHAMED

B.Sc.(1992)

SUPERVISED BY PROF. DR. SAMIR K.EL-SADANY

Professor of Physical Organic Chemistry

DR. ABD EL-NABY I. DARWISH

DR. MOHAMED E.ELBA

Lecturer of Physical Organic Chemistry
Faculty of Education - Alexandria

Lecturer of Physical Organic Chemistry

Faculty of Education - Damanhour

CHEMISTRY DEPARTMENT
FACULTY OF SCIENCE
ALEXANDRIA UNIVERSITY
1998

TO MY HUSBAND MOHAMED AND MY SON AHMED

NOTE

Beside the work carried out in this thesis, the candidate Aziza Abd El-Fattah Mohamed has succeeded in the following post graduate courses in partial fulfillment of the M.Sc. degree.

- 1. Electrochemistry.
- 2. Effect of solvents on reaction rates and mechanisms.
- 3. Electronic, molecular, and nuclear magnetic resonance spectrometry.
- 4. Basic principles of physical organic chemistry.
- 5. Investigation of reaction meachanisms and the chemistry of reactive intermediates .
- 6. Advanced course in the chemistry of carbohydrates.
- 7. Mechanisms of elimination and nucleophilic aromatic substitution reactions.
- 8. Advanced course in the chemistry of steroids and polyterpenoids.
- 9. New advances in the chemistry of amino acids and proteins.
- 10. Elementary course in BASIC computer language.
- 11. Elementary German language course.

Prof. Dr. Laila M. Thabet El-Sayed

Head of the Chemistry Department

ACKNOWLEDGMENT

I would like to express my sincere thanks and gratitude to *Prof. Dr.*Samir K. El-Sadany, professor of Physical organic Chemistry and Dr.

Mohamed E. Elba, lecturer of Physical Organic Chemistry for their suggesting the point of research and for closely following all its stages. I offer my most heartfelt gratitude for all the time and effort they invested in this research.

My thanks to *Dr. Abdel-Naby I. Darwish*, lecturer of Physical Organic Chemistry for following this research, continuous interest, encouragement and advices.

My thanks are also to *Dr. M. Abdel-Zaher Mostafa*, assistant Prof. of Organic Chemistry, Faculty of science, Alexandria University for his fruitful discussion for the interpretation of the mass spectral results.

I extend my thanks to *Dr. Nagwa M. Hamada*, lecturer of Organic Chemistry, Faculty of Education, Alexandria University for her interest and advice concerning this work.

My thanks are also to all the colleagues at the Chemistry Department for their cooperation.

Finally, my sincere thanks to my parents, my sister Manal and my husband Mohamed M. Omar for their patience, and encouragement during my study.

CONTENTS

	Page
SUMMARY	Ü
CHAPTER I	
INTRODUCTION	
Syntheses and Reactions of α, β -unsaturated ketones:	
A- Syntheses	1
B- Reactions	2
(I) Reaction with reagents containing active	•
methylene groups	3 .
(II) Reaction with reagents containing amino	
or imino groups:	
a) Reaction with aliphatic and aromatic	
amines	6
b) Reaction with hydroxyl amine	8
c) Reaction with different hydrazines	10
OBJECT OF THE WORK	27
CHAPTER II	
EXPERIMENTAL	•
(I) Preparation of starting materials	29
(II) Reaction products	31
(III) Purification of solvents:	
i) Benzene	52
ii) Acetonitrile	52
iii) Ethanol	52
(IV) Kinetic Technique, Rate Measurments	
and Spectrophotometric Studies	54
CHAPTER III	
RESULTS AND DISCUSSION	
(I) Synthesis and configuration of starting materials	96
(II) Discussion and interpretation of the results	99
(III) Kinetic studies:	
a) Kinetic Measurements	115
b)Activation parameters	118
c) Substituent effect	120
d) Mechanism of the reaction	124
REFERENCES	127
ADARIC SUMMADY	

SUMMARY

This thesis includes three chapters and ends with a list of references.

The first chapter covers the most up-to-date literature of the reactions of some α,β -unsaturated ketones with different nucleophiles.

The second chapter is divided into two parts:

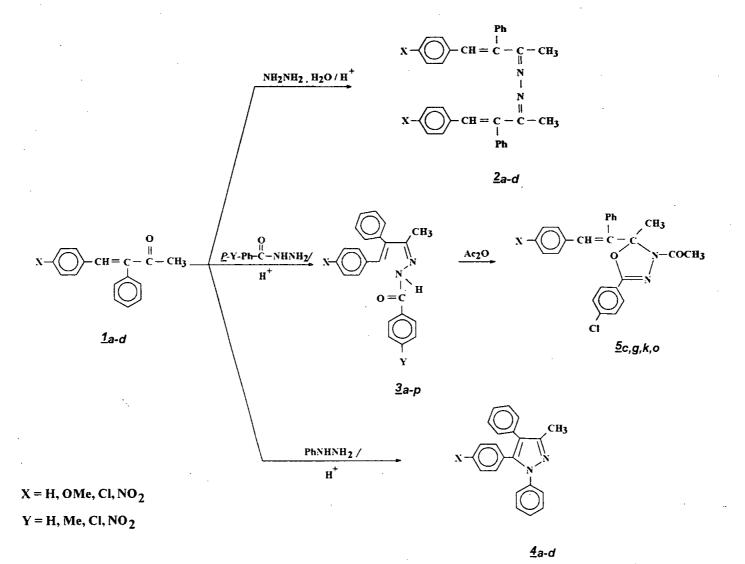
The first part describes the method of preparation of (\underline{E}) -4- $(\underline{p}$ -substitutedphenyl)-3-phenyl-3-buten-2-ones \underline{I}_{a-d} .

$$C = C$$
H
 $C - CH_3$
 $C = C$
 E
 $C - CH_3$
 $C - CH_3$

This part describes the reaction of \underline{I}_{a-d} with hydrazine hydrate, aroylhydrazine and phenylhydrazine in absolute ethanol in the presence of catalytic amount of acetic acid. It also includes the method of cyclization of some open-chain aroylhydrazones $\underline{J}_{c,g,k,o}$.

The second part includes the kinetic data and the kinetic procedure used for determining the rate constants for the reaction of \underline{I}_{a-c} with phenylhydrazine in acetonitrile at four different temperatures as well as the kinetics of the reaction of \underline{I}_c with phenylhydrazine in acetonitrile-ethanol mixture in different ratios at four different temperatures.

The third chapter deals with the discussion and interpretation of the results obtained from the above mentioned reactions. It provides the reaction of


(E)-4-(p-substitutedphenyl)-3-phenyl-3-buten-2-ones \underline{I}_{a-d} with hydrazine hydrate (1:1 molar ratio) in absolute ethanol in the presence of catalytic amount of acetic acid at room temperature which gave the corresponding 4-aryl-3-phenyl but-3-en-2-one azine $\underline{2}_{a-d}$ as a final product. While the refluxing of \underline{I}_{a-d} with aroylhydrazine (1:2 molar ratio) in absolute ethanol and few drops of acetic acid led to the formation of the corresponding 4-(p-substitutedphenyl)-3-phenyl but-3-en-2-one-p-substitutedbenzoylhydrazone $\underline{3}_{a-p}$. Furthermore, refluxing of some of these aroylhydrazone $\underline{3}_{c,g,k,o}$ with acetic anhydride for $1^1/2$ hour afforded the corresponding cyclic 3-acetyl-5-(p-chlorophenyl)-2-methyl-2-[1^1 -phenyl- 2^1 -(p-substitutedphenyl) ethen- 1^1 -yl]-1,3,4-oxadiazoline $\underline{5}_{c,g,k,o}$.

However, the reaction of \underline{I}_{a-d} with phenylhydrazine (1:1 molar ratio) in absolute ethanol in the presence of acetic acid at room temperature afforded the corresponding 1,4-diphenyl-3-methyl-5-(p-substitutedphenyl) pyrazole $\underline{4}_{a-d}$ as shown in Scheme (I). Assignment of the chemical structure of all products $\underline{2}_{a-d}$, $\underline{3}_{a-p}$, $\underline{4}_{a-d}$ and $\underline{5}_{c,g,k,o}$ was achieved using IR, UV, ¹H-NMR and mass spectra as well as elemental analysis.

The kinetic measurements of the reaction of \underline{I}_{n-c} with phenylhydrazine in acetonitrile in the presence of catalytic amount of acetic acid as well as the measurements of the reaction of \underline{I}_c with phenylhydrazine in acetonitrile-ethanol mixture with different ratios have been studied. The rate constants were measured at four different temperatures and the activation parameters were calculated by Microsoft Excel with correlation factor (r) of 0.99 in all cases.

The main governing factor is the activation enthalpy $\Delta H^{\#}$ (enthalpic control) which can be explained as arising from consecutive process, where the nucleophilic addition step on the carbonyl group affording the hydrazone is not alone.

The kinetic data reveal that the rate increases with the increase in acetonitrile content until a maximum was obtained in pure acetonitrile which attributed to the formation of more effective transition state solvation.

Scheme (I)