

Does the Diffusion Weighted Images and Subtraction MRI of Hepatocellular Carcinoma has a Role in Predicting Outcome of Transarterial Chemoembolization?

Thesis

Submitted for Partial Fulfillment of Master Degree in **Kadiodiagnosis**

Bγ **Saeed Adel Saeed EL Mallah** *M.B.B.Ch, October 6 University*

Under Supervision of

Dr. Reem Hassan Bassiouny

Assistant Professor of Radiodiology Faculty of Medicine – Ain Shams University

Dr. Rasha Tolba Khattab

Lecturer of Radiobiology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Dr. Reem Hassan**Bassiouny, Assistant Professor of Radiodiology,

Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Rasha Tolba Khattab**, Lecturer of Radiobiology, Faculty of

Medicine, Ain Shams University, for her sincere

efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Saeed Adel Saeed ET Mallah

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	11
Introduction	1
Aim of the Work	16
Review of Literature	
Anatomy	17
■ Techniques of MRI of the Liver	28
■ Principles of Diffusion-Weighted MR Imaging	
■ Pathological Aspects of HCC	54
■ The Role of Transcatheter Arterial Chemoemboliza (TACE) in Management of HCC	
 Role of Dynamic and Diffusion MRI in Assessment of HCC Necrosis after Chemoembolization 	81
Patients and Methods	97
Results	110
Illustrative Cases	
Discussion	173
Limitations of the Study	180
Conclusion	181
Summary	182
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Illustrates the (RECIST) and (mRE criteria	
Table (2):	Shows the examination parameters of pre contrast MR sequences	
Table (3):	Patients' age data	110
Table (4):	Represents diameter of the lesions in c	m113
Table (5):	Correlating dynamic MRI results to the diagnosis in the studied group	
Table (6):	Correlating subtraction MRI results final diagnosis in the studied group	
Table (7):	Correlating diffusion MRI results to the diagnosis in the studied group	
Table (8):	Shows the different indices of the Dy MRI and the DWI	

List of Figures

Fig. No.	Title	Page No.
E' (1)	T*	177
Figure (1):	Liver	
Figure (2): Figure (3):	Liver segments in anterior view	
Figure (4):	Normal hepatic arterial anatomy Portal vein: segmental anatomy	
rigure (4):	configuration (>90% cases)	
Figure (5):	Early branching of hepatic veins	
Figure (6):	Normal hepatic veins	
Figure (7):	Portal vein anatomy	
Figure (8):	Normal MR Liver signal intensity	
8 (-7-	(right) and T2 (left) weighted	
	contrast axial images	
Figure (9):	Importance of a multichannel	
	receiver coil	29
Figure (10):	Axial liver breath-hold images fi	rom a
	standard abdominal imaging protoco	
Figure (11):	64-year-old man with hepatoc	
	carcinomas	
Figure (12):	31-year-old man with hepatoce	
F! (10)	carcinoma and portal vein thrombo	
Figure (13):	Schema of misregistration and erro	
	determination of enhancement be unenhanced and contrast-enh	
	source images	
Figure (14):	False positive result of subtr	
rigure (14).	imaging in a 64-year-old woman	
Figure (15):	Schematic illustrates water mo	
8 (/-	movement	44
Figure (16):	Schematic illustrates the effect	of a
	diffusion-weighted sequence on	water
	molecules (solid circles) within	highly
	cellular tissue or a rest	
	environment	46

Fig. No.	Title	Page	No.
Figure (17):	Visual liver lesion characterization DW MR imaging		47
Figure (18):	(a) Graph illustrates signal interest by values at diffusion-weight imaging (DWI) of tissue with no versus restricted diffusion. (b) Gillustrates the logarithm of intensity versus by values at diffusion.	ensity ighted ormal Graph signal	
	weighted imaging of normal liver v		40
Figure (19):	liver tumor	ar-old e left	
Figure (20):	hepatic lobe Drawing demonstrates that regenerative nodule can under atypia and transforms into a dyspector.	a ergoes	51
	nodule		57
Figure (21):	Trabecular hepatocellular carcinon		
Figure (22):	Acinar hepatocellular carcinoma		
Figure (23):	HCC isointense on T2W images		62
Figure (24): Figure (25):	Typical hepatocellular carcinoma 56 year-old man with HCC sh nodule-in-nodule appearance	owing	
Figure (26):	Transverse MR images in 50 year man with alcohol-and hepatitic related cirrhosis diagnosed with o	ar old s C– liffuse	
Figure (27):	HCC	Axial phase	
Figure (28):	T1FS GRE image	theter ACE)-	

Fig. No.	Title	Page No.
Figure (29):		reveals arterial induced injury, biloma
Figure (30):	air-forming bacteria	lesional treated), with after arterial
Figure (31):	An Axial gadolinium-enhanced g echo MRI image of the liver rupture of a left lobe HCC	radient shows
Figure (32):	Four types of accumulation patt iodized oil on CT post- transcarterial chemoembolization	terns of eatheter
Figure (33):	A hepatocellular carcinoma nodu a radiologic response of 2.4 reveals incomplete necrosis explanted liver	lle with months of the
Figure (34): Figure (35):	Complete necrosis of HCC after T Axial fat-suppressed T2-weight and postcontrast late phase MR of a 52-year-old woman hepatocellular carcinoma, for transcatheter arterial chemoembo	ACE85 ted (a) images with ollowing
Figure (36):	therapy HCC and chemoembolization	

Fig. No.	Title Page	No.
Figure (37):	Partial response of HCC to	
	chemoembolization late arterial phase of DCE MR showing (a) partial	
	enhancement that washes out on late -	
Figure (38):	phase image (b)	
rigure (66).	injection of gadolinium chelates, ablated	
	lesion (arrow) shows peripheral area of	
	enhancement (arrowheads), suggesting residual viable tumor	
Figure (39):	66-year-old woman with residual viable	
3	tumor after transcatheter arterial	
	chemoembolization	92
Figure (40):	Partial response of HCC after chemoembolization	00
Figure (41):	Perilesional recurrence of HCC after	
riguic (41).	chemoembolization	
Figure (42):	Subtraction technique	
Figure (43):	Axial DW MR imaging at b-value of 750	
	s/mm2 obtained before and at the end of	
Figure (44):	treatment Peri lesional recurrence of HCC after	
rigure (44).	chemoembolization	
Figure (45):	Distribution of patients according to	
	gender	
Figure (46):	Distribution of lesions into well ablated	
Figure (47):	and malignant residual groups Distribution of lesion border in both well	
rigure (47):	ablated and malignant conditions	
Figure (48):	Distribution of signal intensity of well	
U	ablated conditions on T1 WIs	

Fig. No.	Title	Page No.
F! (40)		0 11
Figure (49):	Distribution of signal intensity ablated conditions on T2 WIs	
Figure (50):	Distribution of signal intense residual lesions on T1 WIs	v
Figure (51):	Distribution of signal intense residual lesions on T2 WIs	v
Figure (52):	Results of receiver operating cur ADC values in distinguishing and malignant groups	benign

Tist of Abbreviations

Abb.	Full term
ADC	Apparent diffusion coefficient.
<i>APF</i>	Arterio portal fistula
CT	Computed Tomography.
DCE MRI	Dynamic Contrast Enhanced Magnetic Resonance Imaging
<i>DN</i>	Dysplastic Nodule.
DWI	Diffusion Weighted Imaging.
<i>EASL</i>	European Association for the Study of the Liver
<i>ELT</i>	Echo length Train
<i>EPI</i>	Echoplaner Imaging.
<i>FFE</i>	Fast Field Echo.
FN	False Negative
<i>FP</i>	False Positive.
FSE	Fast Spin Echo
<i>GRE</i>	Gradient Echo.
<i>HBV</i>	Hepatitis B Virus.
HCC	Hepatocellular carcinoma.
HCV	Hepatitis C Virus
mRECIST	modified Response Evaluation Criteria in Solid Tumors.
MRI	Magnetic resonance imaging.
<i>NPV</i>	Negative predictive Value.
<i>OP</i>	Out of Phase.

Tist of Abbreviations cont...

Abb.	Full term
PES	Post Embolization Syndrome.
<i>PPV</i>	Positive Predictive Value.
RECIST	Response Evaluation Criteria In Solid Tumors
ROC	Receiver Operating Curve
ROI	Region of Interest.
<i>RT</i>	Respiratory Triggered.
SE	Spine Echo.
SNR	Signal to noise ratio.
SPAIR	Spectrally adiabatic inversion recovery.
SPIO	Superparamagnetic iron oxide particle.
<i>SSTSE</i>	Single shot turbo spin echo.
STIR	Short-tau inversion recovery
TACE	$. Transcatheter\ arterial\ chemoembolization.$
TE	Time of Echo.
TN	. True negative
<i>TP</i>	True positive
TR	$.\ Time\ of\ Repetition.$
<i>TTP</i>	Time to peak aortic enhancement
<i>WI</i>	Weighted imaging.

Introduction

epatocellular carcinoma (HCC) is one of the most common malignancies worldwide for its high incidence and mortality, which seriously threatens human health and life (*Jemal et al.*, 2011).

Surgical resection remains the first option for HCC patients, but a number of patients are diagnosed after the optimal time for surgical resection has passed (*Pascual et al.*, 2016).

Transcatheter arterial chemoembolization (TACE) has been widely used in patients with unresectable HCC (Song et al., 2015).

TACE involves the emulsification of a chemotherapeutic agent in a viscous drug carrier and embolic material into the tumor-feeding arteries, thereby inducing tumor necrosis and regression (*Roccarina et al., 2015; Schutte et al., 2014*).

Thus, it is of paramount importance to assess the efficacy of TACE in the treatment of HCC accurately and timely.

Computed tomography (CT), magnetic resonance imaging (MRI), and digital subtraction angiography (DSA) are common imaging techniques in evaluating the efficacy of TACE of Hepatocellular carcinoma (*Luypaert et al.*, 2001).

Diffusion-weighted imaging (DWI) and perfusionweighted imaging (PWI), as representatives of functional MRI techniques, play pivotal roles in the diagnosis of HCC and assessing the efficacy of TAC as a treatment modality (Li et al., 2012).

DWI exploits the random motion of water molecules in tissues, which takes apparent diffusion coefficient (ADC) as a quantitative index in clinical practice (Schmiedeskamp et al., 2012). PWI provides information on microvascular distribution and blood perfusion with high temporal and spatial resolutions (Kamel et al., 2006).

Compared with the commonly used methods such as CT, MRI, and DSA, in the follow-up of HCC after TACE, DWI is capable of detecting new lesions and distinguishing residual neoplastic tissue and necrotic neoplastic tissue timely and accurately (Chen et al., 2014).

Additionally, PWI acts as a very sensitive imaging technique that could be used to monitor blood flow changes in HCC both before and after TACE as well as to evaluate the efficacy of TACE (Kasper et al., 2016).

The combination of DWI and PWI could achieve a more accurate diagnosis of tumor residual or recurrence after TACE, which exerts a beneficial impact on assessing early clinical effects and making further therapeutic plan. However, few

studies report the quantitative parameters of DWI combined with PWI in evaluating the therapeutic efficacy of TACE in the treatment of HCC. In the present study, we aimed to explore the predictive values of DWI and PWI in evaluating the efficacy of TACE in the treatment of HCC patients.