

Comparison Study between Clipping, Ligasure and Diathermy of Cystic Artery in Laparoscopic Cholecystectomy

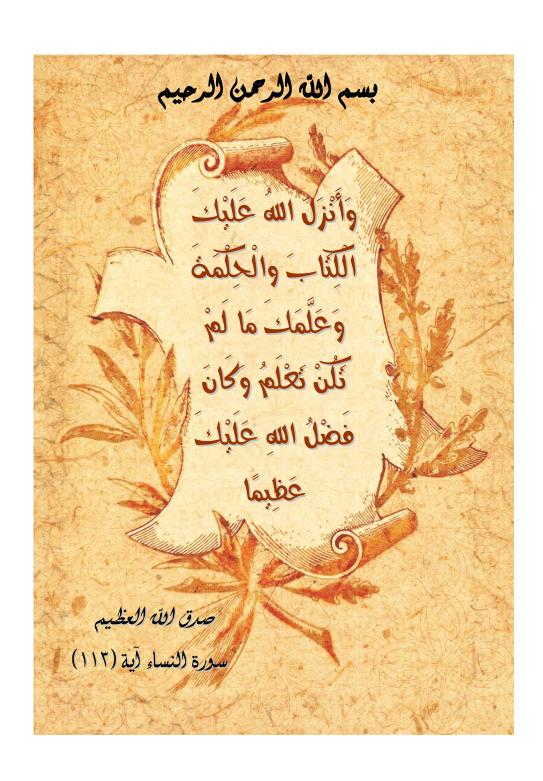
Thesis

Submitted for Partial Fulfillment of Master Degree in **General Surgery**

By

Ahmed Ali Ahmed Mohamed
M.B.B.CH

Under Supervision of


Prof. Dr/ Sameh Maaty

Professor of General Surgery
Faculty of Medicine – Ain Shams University

Dr/ Fawzy Salah Fawzy

Lecturer of General Surgery
Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University
2019

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr/ Sameh Maaty**, Professor of General Surgery, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr/ Fawzy Salah Fawzy**, Lecturer of General Surgery, Faculty of

Medicine, Ain Shams University, for his sincere

efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Ahmed Ali Ahmed Mohamed

Tist of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	6
List of Figures	7
Introduction	1 -
Aim of the Work	13
Review of Literature	
 Anatomy of the Biliary Tree and the Gall Bladder 	14
■ Pathology of Gall Bladder Stones	37
■ Diagnosis of Gall Bladder Stones	41
■ Plans for Management of Calcular Cholecystitis	61
■ Complications of Laparoscopic Cholecystectomy	74
Patients and Methods	95
Results	105
Discussion	122
Summary	131
Conclusion	133
References	134
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
$\Delta I.T$. Alanineaminotransferase
	. Aspartateaminotransferase
<i>CBD</i>	
	Conventional Laparoscopiccholecystectomy
	Computed tomography
	Endoscopic Biliary Sphincterotomy
	Endoscopic retrograde
	cholangiopancreatography
HIDA	. Diethyacetanilido-iminodiaceticaci
LC	Laparoscopic cholecystectomy
<i>LFT</i>	
	. Magnetic resonance cholangio
	pancreatography
MRI	. Magnetic resonance imaging
OC	Open cholecystectomy
PD	Pancreatic duct
POC	Per operative cholangiography
PTC	Percutaneuc transhepaticcholangiography.
PTD	Percutaneuc transhepatic dilatation
	. Glutamic oxaloacetic transaminas
SGPT	. Glutamic pyruvate transaminase
	Total parenteral nutrition

List of Tables

Table No.	Title	Page No.
Table (1):	Risk factors for cholesterol gallsto	nes40
Table (2):	Segments of the biliary tract and arteries lying anterior to them	
Table (3):	Different classification for bile duc	et injuries84
Table (4):	Distribution of age and sex in all g	groups106
Table (5):	Comparison between the three structure according to timing for operation(r	· -
Table (6):	Comparison between the three stuaccording to visceral injury vascular injury	and Major
Table (7):	Comparison between the three stuaccording to Tube drain collection/	
Table (8):	Comparison between the three stuaccording to U/S 1d pot op. for her	· ·
Table (9):	Comparison between the three stuaccording to U/S 1w pot op. for her	-

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Embryologic development of Biliary	tree 15
Figure (2):	Variations in the junction of the	
rigure (2).	duct and common hepatic duct	•
Figure (3):	Variations of cystic artery	
Figure (4):	Anatomy of the extrahepatic Bilia	
8 /	and pancreatic duct	-
Figure (5):	Relationship of structures withi	n the
	hepatoduodenal ligament	19
Figure (6):	Nerve supply of Biliary system	22
Figure (7):	Sites of potential biliary	
	malformations	
Figure (8):	Types of double gallbladder arising	
	split primordium	
Figure (9):	Accessory gall bladder	
Figure (10):	Atresias of biliary tract	
Figure (11):	Five general forms of choledochal cy	
Figure (12):	Accessory bile duct relevant cholecystectomy	
Figure (13):	Calots triangle	
Figure (14):	Define the neck of gallbladd retracting the infundibulum	•
Figure (15):	Define gallbladder cystic duct juncti	
Figure (16):	Identify the cystic lymph node	
rigure (10):	triangle	
Figure (17):	Display all the structures in the	Calot's
	Calot's triangle	33
Figure (18):	Roviers sulcus	36
Figure (19):	Critical view of seafty	36
Figure (20):	Cholesterol gallstone formation	39
Figure (21):	Setup for laparoscopic cholecystecto	my65

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (22):	Port sites	65
Figure (23):	Operative steps	
Figure (24):	Technique of fundus first lapa	
rigure (24):	cholecystectomy	-
Figure (25):	Percutaneous transhepatic cholans in a patient with a bile duct s secondary to iatrogenic injury cholecystectomy	stricture during
Figure (26):	ERCP: Post laparoscopic cholecys showing filling of a normal paduct (PD)	tectomy ncreatic
Eigene (97).	Rouviere sulcus	
Figure (27):		
Figure (28):	Possible iatrogenic injuries to bilia	
Figure (29):	CT showing large bile duct co (biloma; arrow) occurring after b	ile duct
	injury	
Figure (30):	Classification of bile duct injury	
Figure (31):	Hepatico-jejunostomy anastomosis	
Figure (32):	Longitudinal Hepatico-jejuranastomosis	_
Figure (33):	Comparison between the three groups according to timin	g for
T' (0.4)	operation(min)	
Figure (34):	Comparison between the three groups according to visceral injury	
Figure (35):	Comparison between the three groups according to Major vascular	
Figure (36):	Comparison between the three groups according to Tube drain/24h	studied

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (37):	Comparison between the three st groups according to U/S 1d pot of hematoma	p. for
Figure (38):	Comparison between the three st groups according to U/S hematoma 1	
Figure (39):	Open widow to achieve critical vi	
Figure (40):	Clipping both cystic artery and duct	116
Figure (41):	Clipping both cystic artery and duct	117
Figure (42):	Division cystic artery post clipping	117
Figure (43):	Traction of fundus to appear distructure	
Figure (44):	Traction of fundus to appear distructure	
Figure (45):	Traction of fundus to appear distructure	
Figure (46):	Introduce critical view of safety	
Figure (47):	Division cystic artery with haemostasis	_
Figure (48):	Introduce critical view of safety	
Figure (49):	Division cystic artery with Diath	
g (- 0) •	cautrization	-
Figure (50):	Good haemostasis post disection	121

Introduction

he first laparoscopic cholecystectomy was done on September 12, 1985 by Prof Dr Med Erich Mühe of Böblingen, Germany. In 1990, at the Society of American Gastrointestinal Surgeons Convention (SAGES) perform early laparoscopic cholecystectomy, but Mühe was not. However, in 1999 he was recognized by SAGES for having performed the first laparoscopic cholecystectomy (*Phillips et al.*, 2012).

Laparoscopic cholecystectomy has become the gold standard in the treatment of symptomatic gall stones, the major advantages of laparoscopic cholecystectomy include less postoperative pain, less time required for hospitalization and recovery, and better cosmetic results (*Terho et al.*, 2016).

Laparoscopic cholecystectomy was compared with the open procedure in a prospective comparative study focusing on complications. The only postoperative death occurred after open cholecystectomy. The need for postoperative analgesics and Hospital stay was significantly reduced by laparoscopic cholecystectomy so it carries a lower risk of serious complications than the open procedure (*Bhar et al.*, 2013).

However, in comparison between two different school new and old one, open and laparoscopic cholecystectomy we shouldn't forget important of open cholecystectomy in laparoscopic contraindication including empyema of the

gallbladder, gangrenous cholecystitis, coagulopathy, portal hypertension and peritonitis. Take in consideration different preoperative predictor factor of conversion of Laparoscopic cholecystectomy to open cholecystectomy (Widmer et al., 2015; Ghazanfar et al., 2017).

Gall stone disease is one of most common disease all over the world, as in USA >700,000 Cholecystectomies, 10:15% of white adults in developed countries harbor gallstones (Knab et al., 2014).

A good knowledge of the incidence and types of anomaly or variation is key to a safe cholecystectomy, as 50% of patients presenting with significant variation from the expected normal pattern (Al-Sayigh et al., 2010).

The best way to avoid laparoscopic cholecystectomy complication is using the Critical View of Safety (CVS) to identify cystic duct and cystic artery during laparoscopic cholecystectomy (Strasberg et al., 2010).

The technique of performing LC has undergone many changes and variations. Several surgeons have tried to reduce the size and number of ports to improve cosmetic and postoperative outcomes and developed their own different versions. The standard technique of performing LC is to use 4 ports. However The most recent development in technique of LC is single incision laparoscopic surgery (SILS), single site

laparoscopic cholecystectomy (SSLC), 3 ports, Natural orifices transluminal endoscopic surgery (NOTES) (Haribhakti et al., 2015).

There are many ways to achieve homeostasis: monopolar electro coagulation (ME), bipolar electro coagulation (BE), Ligasure (LS), a modern bipolar vessel sealing system, and Ultracision (UC) (Prokopakis et al., 2010).

The Ligasure Vessel Sealing System (LVSS) is a bipolar electrosurgical device with integrated active feedback control, sealing vessels up to 7 mm in diameter. It facilitates surgery by achieving the efficient haemostasis of blood vessels encountered during dissection, and allowing the rapid and secure division of vascularised tissues, while minimizing thermal injury to adjacent tissues (*Prokopakis et al.*, 2010).

AIM OF THE WORK

o review the procedure's safety and effectiveness. Through a comparison review between clipping or clippless either Diathermy cauterization or Ligasure during laparoscopic cholecystectomy, the authors examine the operative and post operative complication to this techniques.

Chapter I

ANATOMY OF THE BILIARY TREE AND THE GALL BLADDER

a) Embryology of the Biliary Tract:

The Biliary tree and liver develop from a diverticulum of the embryonic foregut at approximately 18 days of gestation. Between the fourth and fifth weeks, the diverticulum consists of a solid cranial portion and a hollow caudal portion.

- 1. The solid cranial portion differentiates into the: liver with the development of hepatocytes and intrahepatic bile ducts.
- 2. The hollow caudal portion gives rise to: the gallbladder, the extra hepatic bile ducts, and the ventral pancreas (*Schulick*, 2011).(fig1)

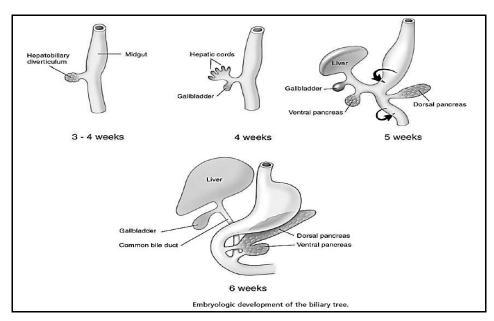


Figure (1): Embryologic development of Biliary tree (*Skandalakis et al.*, 2004).

b) Topographic Anatomy of the Biliary Tree and the Gall Bladder:

Gall bladder:

The gallbladder is a reservoir for bile located on the under surface of the liver at the confluence of the right and left halves of the liver. It is separated from the hepatic parenchyma by a cystic plate, which is constituted of connective tissue applied to the Glisson capsule. The gallbladder may be deeply imbedded into the liver or occasionally presents on a mesenteric attachment, but usually lays in a gallbladder fossa. The gallbladder varies in size and consists of a fundus, a body, and an infundibulum (*Schulick*, 2011).