

Processing of Ultra-High Strength Composite Materials via Non-Traditional Methods

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Mechanical Engineering

(Design and Production Engineering)

By

Riham Mohamed Sobhy El-Sheikh

Bachelor of Science in Mechanical Engineering (Manufacturing Engineering and Production Technology)

Modern Academy for Engineering and Technology, 2013

Supervised By

Prof. Adel B. El-Shabasy

Faculty of Engineering,
Ain Shams University

Prof. Bakr M. Rabeeh

Faculty of Engineering
and Material Science
German University in Cairo

Ain Shams University

Faculty of Engineering

Design and Production Engineering

Processing of Ultra-High Strength Composite Materials via Non-Traditional Methods

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science In Mechanical Engineering

(Design and Production Engineering)

by

Riham Mohamed Sobhy El-sheikh

Supervising Committee

Name and Affiliation	Signature
Prof. Dr. Adel Badawy El-Shabasy,	
Design and Production Engineering Dept.,	
Ain Shams University.	
Prof. Dr. Bakr Mohamed Rabeeh,	
Engineering and Material Science Dept.,	
German University in Cairo	

Date: 22/7/2019

Ain Shams University

Faculty of Engineering

Design and Production Engineering

Processing of Ultra-High Strength Composite Materials via Non- Traditional Methods

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science In Mechanical Engineering

(Design and Production Engineering)

by

Riham Mohamed Sobhy El-Sheikh

Examination Committee

Name and Affiliation	Signature
Prof. Dr. Nabil Abd El-Hamid Gad Allah	
Manufacturing Engineering and Production	
Technology Dept.,	
Modern Academy for Engineering and Technology	
Prof. Dr. Moustafa Abdel Moneim Chaaban	
Design and Production Engineering Dept.,	
Ain Shams University.	
Prof. Dr. Adel Mohamed Badawy El-Shabasy	
Design and Production Engineering Dept.,	
Ain Shams University.	
Prof. Dr. Bakr Mohamed El-Sayed Rabeeh	
Engineering and Material Science Dept.,	
German University in Cairo	

Date: 22/7/2019

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

	Signature
	• • • • • • • • • • • • • • • • • • • •
Riham Mohamed Sobhy	El-Sheikh
Date:	2019

ACKNOWLEDGMENT

First, I thank Allah for aiding me to complete this work and there is no words would be enough to describe the support of my parent and my husband their belief in me and my capabilities.

My deepest gratitude goes to Prof. Dr. Adel Mohamed Badway El-Shabasy, Design and Production Engineering Dept, Ain Shams University and Prof. Dr. Bakr Mohamed Rabeeh, Engineering and Material Science Dept, German University in Cairo, for the use of the laboratory facilities and for their supervision and guidance during this work.

Also, I am very thankful to Prof. Dr. Hala Abd El Hakim for supporting me to complete this work.

Thanks to foundry Lab technicians, Ain Shams University.

My special thanks to Dr. Ahmed Ramzy for helping me during carrying out experiments.

Finally, yet importantly, I am fully obligated for kind help of all the team work.

Riham.S. El-Sheikh

Researcher Data

Name : Riham Mohamed Sobhy El-Sheikh

Date of birth : 12/7/1991

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science Degree

Field of specialization : Mechanical Engineering (Manufacturing

Technology and Production Engineering)

University issued the degree : Modern Academy for Engineering and

Technology

Date of issued degree : July, 2013

Current job : Teaching Assistant, Production

Engineering Department, Modern University for Engineering and

Technology, Cairo, Egypt.

Abstract

For the past few decades, Metal Matrix Composite has encountered an extensive improvement. Composite processing is an objective because of its ultra-high strength structural materials. Aluminum Metal Matrix composite introduced ultra-high strength and high performance if compared with conventional metals and alloys. Direct Metal Oxidations (DIMOX) along with Semi-Solid process (Rheocasting and Thixocasting) are introduced to control structural micro constituents. There is a limited understanding about DIMOX including its processes parameters (Temperature, Holding Time, and Alloying Elements). The control of micro structure components into a hybrid composite processing is a goal with a new emerging technique and economic aspect. In addition, the effect of boron addition, via the addition of boric acid or borax, is also introduced.

The control composite micro components, shape, size and morphology is also introduced via semisolid reaction processing. Microstructural analysis is introduced by Optical Microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Mechanical characterization is also introduced using tensile testing, 3-point bending test and hardness test. Boron has a distinguishable effect as dispersed phase in whiskers or as coating phase. Semisolid processing, Rheocasting induces alloy segregation more dominated into a bulk hybrid composite processing. In contrast, semisolid, Thixocasting processing dominates more surface coating rather than bulk processing. The application of liquid state processing, DIMOX, with the control of micro constituents with the synergetic effect of boron is introduced for new nontraditional hybrid structural materials.

Keywords: Alloy segregation, Boric acid, Borax, DIMOX, Hybrid, Recycle, Rheocasting, and Thixocasting.

Table of Contents

State	ment	i
ACK	NOWLEDGMENT	ii
Resea	archer Data	iii
Abstr	ract	iv
Table	e of Contents	v
List c	of Figures	ix
List c	of Tables	xv
ABB	REVIATIONS	xvi
NOM	MENCLATURES	. xvii
1	Introduction	1
2	Literature Review	3
2.1.	Engineering Materials	3
2.2.	Composite Materials	3
2.3.	Classification of Composite Materials	4
2.3.1.	. Matrix	4
2.3.2.	. Reinforcement:	5
2.4.	Metal Matrix Composite	6
2.5.	Al-Metal Matrix Composite	7
2.6.	Processing	8
2.6.1.	. Direct Metal oxidation (DIMOX)	8
2.6.2.	. Semi-Solid State processing	11
2.6.2.	.1.Rheocasting (Semi-Solid State Processing)	11
2.6.2.	.2.Thixocasting (Semi-Solid State Processing)	12
2.7.	Application	13
2.7.1.	Structural Industry	14
2.7.1.	.1.Aerospace industry	14

2.7.1.2	2. Automotive Industry	16
2.8.	Problem Statement	16
2.9.	Objective	17
3	Experimental Work	18
3.1.	Experimental work Flow Chat	.18
3.2.	Raw Materials	19
3.3.	Additives	19
3.3.1.	Boric Acid	19
3.3.2.	Borax	20
3.4.	Direct Metal Oxidation (DIMOX)	20
3.5.	Experimental Set up	20
3.5.1.	Furnace	20
3.5.2.	Test Procedures	21
3.6.	Specimens Preparation	23
3.6.1.	Tensile Test	23
3.6.2.	Three Point Bending Test	23
3.7.	Mechanical characterization	24
3.7.1.	Tensile test	24
3.7.2.	Three-point bending test	25
3.7.3.	Vickers Hardness test	26
3.8.	Microstructure Examination	27
3.8.1.	Mounting	27
3.8.2.	Grinding and Polishing	27
3.8.3.	Optical Microscopy	27
3.8.4.	Scanning Electron Microscopy and Energy dispersive X-ray spectroscopy	27
4	Results and Discussion	28
4.1.	Mechanical Characteristic	28

4.1.1.	Tensile tests	8
4.2.1.1	Specimen as received at 750°C for 10mis without the addition of element	
4.2.1.2	DIMOX at 1050°C for 10min and 60min without the addition of element	
4.2.1.3	DIMOX at 1050°c for 10min with the addition element 10% boro via (borax and boric acid)	
4.2.1.4	DIMOX at 1050°c with the addition element 10% boron via (bora and boric acid) and Rheocasting 800°C for 10min3	
4.2.1.5	DIMOX at 1050°c with the addition of element 10%Boron vi (borax and Boric Acid) and Thixocasting 800°C for 10 min3	
4.2.2	Three Point Bending Test	5
4.2.2.1	Specimen as Received for 750°C for 10min without the addition of alloying elements	
4.2.2.2	DIMOX at 1050°C for 10min, without the addition of alloyin element	_
4.2.2.3	DIMOX for 60mins without the addition of alloying element3	7
4.2.2.4	DIMOX at 1050°c with for 10min addition of alloying element 10% Boron via (Borax and Boric Acid)3	
4.2.2.5	DIMOX at 1050°c with addition of element 10% boron via (bora and boric acid) and Rheocasting at 800°c for 10min3	
4.2.2.6	DIMOX at 1050°c with addition element 10% boron via (borax an boric acid) and Thixocasting 800°c for 10mins4	
4.2.3.	Hardness Test	3
4.1.	Micro Structure Analysis	5
4.1.1.	Optical microscopy	5
4.1.2.	Scanning Electron Microscopy	2
4.1.3.	Fracture Surface Analysis. 6	0
4.1.4.	Energy dispersive X-Ray spectroscopy, EDX 6	5

4.1.4.1.	DIMOX at 1050°C for 10min without the addition of alloying elements
4.1.3.2.	DIMOX at 1050°C with 60mins without the addition of element.
4.1.3.3.	DIMOX at 1050°C with 10min with the addition element 10% Boron via (Borax and Boric Acid)
4.1.3.4.	DIMOX at 1050 °C for 10 min with the addition of alloying element of 10% boron via (borax and boric Acid) and Rheocasting at 800 °C with 10min
4.1.3.5.	DIMOX at 1050°C for 10 min with the addition alloying element 10%boron via (Borax and Boric Acid) and Thixocasting at 800 °C with 10min
5	Conclusions
Sugges	tion of Future work80
Referen	ncesxiv
ملخص	

List of Figures

Figure 2-1 Composite material structure [4]	4
Figure 2-2 Schematic of type of reinforcement [5]	6
Figure 2-3 Schematic of DIMOX process [11]	9
Figure 2-4 Al/Alumina phase diagram (Rheocasting Process) [14]1	2
Figure 2-5 Al/Alumina phase diagram (Thixocasting Process) [14]1	3
Figure 2-6 Precentage of Material used in boeing 787 aircraft [5]1	5
Figure 3-1 Experimental work flow chart	8
Figure 3-2 Aluminum Piston Scrap1	9
Figure 3-3a Metallic Mold	1
Figure 3-3b Furnace used for heating sample	1
Figure 3-4 Tensile Test specimen	3
Figure 3-5 Three point Bending Test specimen	4
Figure 3-6 Universiale tensile test machine	5
Figure 3-7 Three point bending test	
Figure 3-8 Vickers Hardness Machine Test	6
Figure 3-9 SEM and EDX Machine	7
Figure 4-1 Engineering Stress- strain curve for as received specimen a	ıt
750°C for 10 min without addition of alloying element2	8
Figure 4-2 Engineering Stress- strain curve for DIMOX specimen a	ıt
1050°C for 10min and 60min without addition of alloyin	_
element2	
Figure 4-3 Engineering Stress- strain curve for DIMOX specimen a	
1050°C for 10 min with addition of 10% boron via borax an	
boric acid3	
Figure 4-3 Engineering Stress- strain curve for DIMOX specimen a	ıt
1050°C for 10 min with addition of 10% boron via borax an	d
boric acid and Rheocasting 800°C for 10 min3	1
Figure 4-5 Engineering Stress- strain curve for DIMOX specimen a	ıt
1050°C for 10 min with addition of 10% boron via borax an	d
boric acid and Thixocasting 800°C for 10 min3	2
Figure 4-6 Comparison between Maxumim stress sample for tensile tes	
3	4
Figure 4-7 Three- point bending curve as received specimen at 750°C for	
10 min without addition of alloying element3	

Figure 4-8 Three- point bending curve for DIMOX specimen at 1050°C
for 10 min without addition of alloying element36
Figure 4-9 Three- point bending curve for DIMOX specimen at 1050°C
for 60 min without addition of alloying element37
Figure 4-10 Three- point bending curve for DIMOX specimen at 1050°C
for 10 min with addition of 10% boron via borax and boric
acid38
Figure 4-11 Three- point bending curve for DIMOX specimen at 1050°C
for 10 min with addition of 10% boron via borax and boric
acid + Rheocasting 800°C for 10 min39
Figure 4-12 Three- point bending curve for DIMOX specimen at 1050°C
for 10 min with addition of 10% boron via borax and boric
acid + Thixocasting 800°C for 10 min40
Figure 4-13 Comparsion between Maximum Stress Sample for 3 point
bending test chart42
Figure 4-14 Hardness test of each sample
Figure 4-15 Optical microscopy result of specimen at magnification X10
as received at 750°C for 10 min without any addition of
alloying element at Center46
Figure 4-16 Optical microscopy result of specimen at magnification X10
as received at 750°C for 10 min without any addition of
alloying element at Edge46
Figure 4-17 Optical microscopy result of specimen at magnification X10
for DIMOX at 1050°C for 10 min without any addition of
alloying element at Center47
Figure 4-18 Optical microscopy result of specimen at magnification X10
for DIMOX at 1050°C for 10 min without any addition of
alloying element at Edge47
Figure 4-19 Optical microscopy result of specimen at magnification X10
for DIMOX at 1050°C for 60 min without any addition of
alloying element at Center48
Figure 4-20 Optical microscopy result of specimen at magnification X10
for DIMOX at 1050°C for 60 min without any addition of
alloying element at Edge48
Figure 4-21 Optical microscopy result of specimen at magnification X10
for DIMOX at 1050°C for 10 min with addition of addition
of 10% boron via borax and boric acid at Center49

Figure 4-22 Optical microscopy result of specimen at magnification X10
for DIMOX at 1050°C for 10 min with addition of addition
of 10% boron via borax and boric acid at Edge49
Figure 4-23 Optical microscopy result of specimen at magnification X10
for DIMOX at 1050°C for 10 min with addition of addition
of 10%boron via borax and boric acid and Rheocasting
800°C for 10 min at Center50
Figure 4-24 Optical microscopy result of specimen at magnification X10
for DIMOX at 1050°C for 10 min with addition of addition
of 10% boron via borax and boric acid and Rheocasting
800°C for 10 min at Edge50
Figure 4-25 Optical microscopy result of specimen at magnification X10
for DIMOX at 1050°C for 10 min with addition of addition
of 10% boron via borax and boric acid and Thixocasting
800°C for 10 min at Center51
Figure 4-26 Optical microscopy result of specimen at magnification X10
for DIMOX at 1050°C for 10 min with addition of addition
of 10% boron via borax and boric acid and Thixocasting
800°C for 10 min at Edge
Figure 4-27 SEM result of specimen at magnification X3000 for as
received at 750°C for 10 min without any addition of alloying
elements at Center
Figure 4-28 SEM result of specimen at magnification X3000 for As
Received at 750°C for 10 min without any addition of
alloying elements at Edge53
Figure 4-29 (a,b) SEM result of specimen at magnification X3000 for
DIMOX at 1050°C for 10 min without any addition of
alloying elements at Center
Figure 4-30 SEM result of specimen at magnification X3000 for DIMOX
at 1050°C for 10 min without any addition of alloying
elements at Edge
Figure 4-31 SEM result of specimen at magnification X3000 for DIMOX
at 1050°C for 60 min without any addition of alloying
elements at Center
Figure 4-32 SEM result of specimen at magnification X3000 for DIMOX
at 1050°C for 60 min without any addition of alloying
elements at Edge56
01011103 00 2050

Figure 4-33 SEM result of specimen at magnification X3000 for DIMOX
at 1050°C for 10 min with addition of 10% boron via borax
and boric acid at Center56
Figure 4-34 SEM result of specimen at magnification X3000 for DIMOX
at 1050°C for 10 min with addition of 10% boron via borax
and boric acid at Edge57
Figure 4-35 SEM result of specimen at magnification X3000 for DIMOX
at 1050°C for 10 min with addition of 10% boron via borax
and boric acid and Rheocasting 800°C for 10 min at
Center57
Figure 4-36 SEM result of specimen at magnification X3000 for DIMOX
at 1050°C for 10 min with addition of 10% boron via borax
and boric acid and Rheocasting 800°c for 10 min at Edge .58
Figure 4-37 SEM result of specimen at magnification X3000 for DIMOX
at 1050°C for 10 min with addition of 10% boron via borax
and boric acid and Thixocasting 800°C for 10 min at
Center58
Figure 4-38 SEM result of specimen at magnification X3000 for DIMOX
at 1050°C for 10 min with addition of 10% boron via borax
and boric acid and Thixocasting 800°C for 10 min at
Edge59
Figure 4-39 Fracture surface result of specimen as received at 750°C for
10 min without any addition of alloying element61
Figure 4-40 a Fracture surface result of specimen DIMOX at 1050°C for
10 min without any addition of alloying element61
Figure 4-40 b Fracture surface result of specimen DIMOX at 1050°C for
10 min without any addition of alloying element62
Figure 4-41 Fracture surface result of specimen DIMOX at 1050°C for 60
min without any addition of alloying element
Figure 4-42 Fracture surface result of specimen DIMOX at 1050°C for 10
min with addition of addition of 10% boron via borax and
boric acid
Figure 4-43 Fracture surface result of specimen DIMOX at 1050°C for 10
min with addition of addition of 10% boron via borax and
boric acid + Rheocasting 800°C for 10 min63