

The Impact of Electrocoagulation on Ovarian Reserve after Laparoscopic Excision of Ovarian Cysts: Randomization Clinical Trial

Thesis

Submitted for Partial Fulfilment of Master Degree in Obstetrics & Gynecology

By

Zahra Hussien Mohamed Chewai M.B.B.CH. MUST University 2013

Under Supervision of

Prof. Dr. Ahmed Hamdy Nagib

Professor of Obstetrics & Gynecology Faculty of Medicine, Ain Shams University

Dr. Kareem Mohamed Labib

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to Allah, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ahmed**Hamdy Magib, Professor of Obstetrics & Gynecology, Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Kareem**Mohamed Labib, Assistant Professor of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all the patients who participated in this study.

Zahra Hussien

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Protocol	
Introduction	1
Aim of the Work	9
Review of Literature	
State Ovarian Cyst	10
State Ovarian Cystectomy	25
State Ovarian Reserve	46
₹ Effect of Electrocautery on Ovarian Reserve	78
Patients and Methods	81
Results	92
Discussion	113
Summary	121
Conclusion	124
Recommendations	125
References	126
Arabic Summary	

List of Tables

Table No	. Title	Page No.
Table (1):	Comparison of the different physical assess ovarian reserve	
Table (2):	Ranges of AMH	63
Table (3):	Static tests for OR	76
Table (4):	Dynamic tests for ovarian reserve	77
Table (5):	Group A (48 CASES) without coagulation	on88
Table (6):	Group B (48 CASES) with coagulation \ldots	88
Table (7):	Description of personal and medicamong group 1 cases (Coagulation)	
Table (8):	Description of disease characteristics group 1 cases (Coagulation)	
Table (9):	Description of Operative and post of characteristics among group 1 (Coagulation)	cases
Table (10):	Description of baseline AMH, FSH, volume and AFC among group (Coagulation)	1 cases
Table (11):	Description of AMH, FSH, ovarian volume AFC at 3 months among group (Coagulation)	1 cases
Table (12):	Description of change in AMH, FSH, volume and AFC at 3 months among cases (Coagulation)	group 1
Table (13):	Description of personal and medicamong group 2 cases (Non coagulation)	
Table (14):	Description of disease characteristics group 2 cases (Non coagulation)	•

List of Cables (Cont...)

Table No	. Title	Page No.
Table (15):	Description of Operative and post characteristics among group 2 ca coagulation)	ases (Non
Table (16):	Description of baseline AMH, FSF volume and AFC among group 2 c Coagulation)	ases (Non
Table (17):	Description of AMH, FSH, ovarian version of AMH, FSH, ovarian version at 3 months among group 2 coagulation)	ases (Non
Table (18):	Description of change in AMH, FSI volume and AFC at 3 months amon cases (Non Coagulation)	g group 2
Table (19):	Comparison between the 2 study regard personal and medical data	
Table (20):	Comparison between the 2 study regard clinical characteristics	
Table (21):	Comparison between the 2 study regard operative and post characteristics	operative
Table (22):	Comparison between the 2 study regard baseline AMH, FSH, ovaria and AFC	n volume
Table (23):	Comparison between the 2 study regard AMH, FSH, ovarian volume after 3 months	and AFC
Table (24):	Comparison between the 2 study regard change in AMH, FSH, ovaria and AFC at 3 months	an volume

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Laparascopic technique.	35
Figure (2):	Model of ovarian reserve from conthe menopause	_
Figure (3):	AMH concentration in GC and foll from normal ovaries	
Figure (4):	AMH as regulator of normal follicle development	~
Figure (5):	Model of AMH action in the ovary	68
Figure (6):	Serum AMH levels in normoovulato	ry women 70
Figure (7):	Comparison between laparoscopic without coagulation studies	
Figure (8):	Comparison between the 2 study regard age.	
Figure (9):	Comparison between the 2 study regard medical data.	-
Figure (10):	Comparison between the 2 study regard comrbidity	
Figure (11):	Comparison between the 2 study regard uterine size.	
Figure (12):	Comparison between the 2 study regard number of cyst.	
Figure (13):	Comparison between the 2 study regard operative time.	
Figure (14):	Comparison between the 2 study regard bleeding.	-

List of Figures

Fig. No.	Title	Page No.
Figure (15):	Comparison between the 2 regard baseline AMH, FSH, and AFC.	ovarian volume
Figure (16):	Comparison between the 2 regard AMH, group 2 cases	

List of Abbreviations

Abb.	Full term
ACOG	American College of Obstetricians and Gynecologists
<i>AFC</i>	Antral Follicle Count
<i>AMH</i>	Anti-Müllerian Hormone
ANOVA	Analysis of Variance
<i>CA</i>	Cancer Antigen
<i>CCCT</i>	Clomiphene Citrate Challenge Test
EOC	Epithelial Ovarian Cancer
FSH	Follicle-Stimulating Hormone
hCG	Human Chorionic Gonadotropin
HGSC	High-Grade Serous Carcinoma
<i>IOTA</i>	International Ovarian Tumor Analysis group
ISUOG	International Society of Ultrasound in Obstetrics and Gynecology
<i>IVF</i>	In Vitro Fertilization
<i>LGSC</i>	Low-Grade Serous Carcinoma
OCs	Oral Contraceptives
ORS	Ovarian Remnant Syndrome
PCOS	Polycystic Ovary Syndrome
PID	Pelvic Inflammatory Disease
ROS	Residual Ovary Syndrome
SGO	Society of Gynecologic Oncologists
TOA	Tubo-Ovarian Abscess
UKTOCS	United Kingdom Collaborative Trial of Ovarian Cancer Screening

Abstract

Introduction: Laparoscopic ovarian cystectomy is currently considered the treatment of choice in women with benign ovarian cysts and has gained increasing acceptance among gynecologic surgeons. However, the safety of this technique in terms of ovarian damage to the operated gonad has recently been questioned. A great deal of evidence supports that the removal of ovarian cysts is associated with injury to the ovarian reserve Aim: The aim of the study is to evaluate the effect of bipolar electrocoagulation on ovarian reserve. Patients and **Methods:** Our randomized clinical research trial was conducted in Ain Shams Maternity Hospital that recruited 96 patients admitted to Obstetrics and Gynecology department. Results: The study included a total of 96 cases divided into 2 groups, the coagulation group (48 cases) and the non coagulation group (48 cases). The majority of cases (n=92) had chocolate cysts (96%) while only 4 cases had other types of cyst (4%). Conclusion: In our study, analysis of data revealed that the using of electrocoagulation during laparoscopic excision of ovarian cysts led to significant decrease in AMH, Ovarian volume and AFC.

Keywords: Ovarian cysts, laparoscopic ovarian cystectomy, electrocoagulation, ovarian reserve.

Introduction

Taparoscopic ovarian cystectomy is currently considered the treatment of choice in women with benign ovarian cysts and has gained increasing acceptance among gynecologic surgeons (Alborzi et al., 2006). However, the safety of this technique in terms of ovarian damage to the operated gonad has recently been questioned. A great deal of evidence supports that the removal of ovarian cysts is associated with injury to the ovarian reserve (Fedele et al., 2004; Somigliana et al., 2003; Candiani et al., 2005). Many of these studies involved patients who required assisted reproduction, and they found that the number both of follicles and retrieved oocytes obtained in the operated gonad during ovarian hyperstimulation was markedly reduced when compared with the contralateral intact ovary. However, most of these studies applied ovarian response to gonadotropin hyperstimulation to measure the ovarian reserve. It has been argued that these patients are not representative of all patients undergoing laparoscopic ovarian cystectomy in terms of ovarian damage because these data were acquired from aggressive gonadotropin stimulation which is thought to be different from a natural menstrual cycle (Li et al., 2009).

On the other hand, because ovarian reserve cannot be measured directly, the evaluation of ovarian reserve is difficult to carry out. The controlled ovarian hyperstimulation in an unselected population of surgical patients for the purpose of

evaluating ovarian reserve is obviously ethically untenable. The serum level of follicle-stimulating hormone (FSH) is a predictor of functional ovarian reserve (Toner et al., 1991), but its usefulness is limited considering that the vast majority of patients undergo monolateral excision of a cyst and the contralateral intact gonad may completely substitute for reduced function of the operated ovary (Lass, 1999). Given the well-established role of ultrasound scanning in the diagnosis and follow-up of ovarian cysts, Frattarelli et al. (2000) and Candiani et al. (2005) reported that basal antral follicle number and mean ovarian diameter could be used as indicators of ovarian reserve. Engmann et al. (1999) found that the value of ovarian stromal blood flow velocity was an initial marker of ovarian reserve before the change of FSH level and ovarian volume.

AIM OF THE WORK

The aim of the study is to evaluate the effect of bipolar electrocoagulation on ovarian reserve.

Research question:

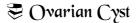
In women planned to undergo laparoscopic ovarian cystectomy, does electrocoagulation have negative impact on ovarian reserve?

Research hypothesis:

In women planned to undergo laparoscopic ovarian cystectomy, electrocoagulation may have negative impact on ovarian reserve.

Chapter 1

OVARIAN CYST


Approach to the patient with an adnexal mass:

mass in the adnexa may be symptomatic or discovered incidentally on pelvic examination or imaging. There are many different types of adnexal masses. The type of mass is identified with pelvic imaging, use of biomarkers, and/or surgical exploration and pathologic evaluation (*Levine et al.*, 2010).

Most adnexal masses arise from the ovary or fallopian tube. However, other gynecologic structures may give rise to an adnexal mass, including the mesovarium or mesosalpinx (eg, paratubal cysts). Uterine leiomyomas may protrude toward the adnexa and be palpated or visualized as an adnexal mass. In addition, adnexal masses may arise from other proximal structures, including the urinary tract (eg, bladder diverticulum), bowel (eg, appendiceal abscess, diverticular abscess, bowel neoplasm), or pelvic connective tissue (eg, peritoneal cyst) or nerves (nerve sheath tumor) (Levine et al., 2010).

Some adnexal masses require immediate attention; these include ectopic pregnancy, adnexal torsion, a ruptured ovarian cyst with hemorrhage, or a tubo-ovarian abscess *(Levine et al., 2010)*.

A serious concern when an adnexal mass is discovered is the possibility that it is malignant. The differential diagnosis of benign and malignant neoplastic masses is discussed below. A

Review of Literature -

consensus paper from the Society of Radiologists in Ultrasound in 2010 indicated that transvaginal ultrasound, supplemented by transabdominal ultrasound, was the best technique for imaging and characterizing an adnexal cyst (*Levine et al.*, 2010).

The first international consensus report on adnexal masses reviewed the current state of the science and reported recommendations for assessment and management of adnexal masses. This report described two approaches to the assessment of adnexal masses. The first is using pattern recognition seen on ultrasound to create a simple risk assessment stratification profile. The second approach is to use risk prediction models with an emphasis on the international ovarian tumor analysis group (IOTA) Simple Rules. There are also recommendations for indeterminant masses with regard to when to refer to an expert sonologist and gynecologic oncologist (Glanc et al., 2017).

Gynecologic Tract Masses:

There are many different types of adnexal masses. The likely etiology of an adnexal mass differs by age and reproductive status. This is because some masses are stimulated by reproductive hormones (*You et al., 2005*).

Ovarian neoplasms (benign and malignant) account for approximately 1% of all tumors in children and adolescents. Most ovarian masses are physiologic or benign neoplasms; fewer than 5% of ovarian cancers occur in this age group (You et al., 2005).