

Evaluation of Red Cell Distribution Width as a Prognostic Factor in Patients with Severe Sepsis

Thesis

Submitted for Partial Fulfillment of Master Degree In Intensive Care Medicine

By

Wael Ahmed Mahmoud Saad Elnafrawy

M.B.B.Ch. Faculty of Medicine- Alexandria University

Supervised by

Prof. Dr. Sherif Samir Wahba

Professor of Anesthesia, Intensive Care and pain management Faculty of Medicine - Ain Shams University

Dr. Abdelaziz Abdallah Abdelaziz Abuzeid

Lecturer of Anesthesia, Intensive Care and pain management Faculty of Medicine - Ain Shams University

Dr. Diaa Eldein Mahmoud Haiba

Lecturer of Anesthesia, Intensive Care and pain management Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2019

Aeknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Sherif Samir Wahba**, Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I wish to express my deepest profound thanks to **Dr.**Abdelaziz Abdallah Abdelaziz Abuzeid, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine-Ain Shams University, for giving me the honor and great privilege of working under his kind supervision and for his fatherly guidance and encouragement, Without his care, this work could never be within hands.

I would like to express my endless appreciation to **Dr. Diaaeldein Mahmoud Haiba**, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine-Ain Shams University, for his great support, valuable guidance and unlimited assistance, his honest assistance and patience make me truly indebted to him.

I am particularly grateful to the patients who had willingly accepted to participate in this study.

List of Contents

	_Page
Acknowledgment	
List of abbreviations	i
List of tables	iii
List of figures	iv
Protocol	••
Introduction	1
Aim of the Work	4
Review of literature	5
Patients and methods	26
Results	32
Discussion	55
Summary	64
Conclusions	69
Recommendations	70
References	71
Arabic summary	•••

List of Abbreviations

ACCP : American College of Chest Physicians
 AIDS : Acquired immune deficiency syndrome
 AMUH : Alexandria Main University Hospital

APACHE II : Acute Physiology and Chronic Health

Evaluation II

APC : Activated protein C

ARDS : Acute respiratory distress syndrome

AUCs : Area under the curves

CARS : Compensatory anti-inflammatory response

CD4 : cluster of differentiation 4CDC : Centers for Disease Control

CKD : Chronic kidney disease

COPD : Chronic Obstructive Pulmonary Disease

CRP : C-reactive protein

CVP : Central venous pressure

DIC : Disseminated intravascular coagulation

DM : Diabetes mellitus

ED : Emergency department

ESICM : European Society of Intensive Care Medicine

Fio2 : Fraction of inspired oxygen

H2RA : H2 receptor antagonists

HIV : Human immunodeficiency virus

HLA : Human leukocyte antigen

HTN : Hypertension

ICU : Intensive care unit

IHD : Ischemic heart disease

IL-1 : Interleukin 1
IL-10 : Interleukin 10
IL-4 : Interleukin 4
IL-6 : Interleukin 6

LMWH : Low molecular weight heparin

LPS : Lipopolysaccharide
M.V : Mechanical ventilation
MAP : Mean arterial pressure

MCV : Mean corpuscular volume

MODS : Multiple Organ Dysfunction Score

MOF : Multiple organ failure

NE : Norepinephrine

NIV : Noninvasive mask ventilation
 NMBAs : Neuromuscular blocking agents
 P_aCO₂ : Partial pressure of carbon dioxide

PAMPs : Pathogen-associated molecular patterns

PaO₂ : Partial pressure of oxygen

PEEP : Positive end-expiratory pressure

pH : Blood acidity

PRR : Pattern recognition receptors

RBC: Red blood cell

RDW : Red blood cell distribution width

ROC : Receiver operating characteristic curve

SaO₂ : Oxygen saturation

SAPS II : Simplified Acute Physiology Score II SCCM : Society of Critical Care Medicine

SGOT : Serum glutamic oxaloacetic transaminaseSGPT : Serum glutamic-pyruvic transaminase

SIRS : Systemic inflammatory response syndrome

SOFA : Sequential Organ Failure Assessment

SSC : Surviving Sepsis Campaign
TNF-α : Tumor necrosis factor alpha
TPN : Total parenteral nutrition
UFH : Unfractionated heparin
UTI : Urinary tract infection

VTE : Venous thromboembolism

WBC : White blood cells

List of Tables

Table	Title	Page
(1)	The SOFA score	9
(2)	The incidence of primary site of infection	10
(3)	The incidence of comorbidity	11
(4)	The incidence of Causative organisms	13
(5)	Distribution of the studied cases according	
	to age, sex and weight	33
(6)	Source of infection	34
(7)	Mean arterial pressure, mixed venous	
	saturation, Central Venous pressure and Lactate Level)	36
(8)	Haemoglobin, WBCs, CRP, Urea and	30
(0)	creatinine.	39
(9)	Descriptive statistics of outcome measures	43
(10)	Relation between days of RDW and 30	10
(10)	days mortality during ICU	45
(11)	Relation between days of RDW and Need	
	of mechanical ventilations	48
(12)	Relation between days of RDW and Need	
	for readmission	49
(13)	Relation between days of RDW and Need	
	for inotropes	50
(14)	Relation between days of RDW and Need	
	of vasopressors	51
(15)	Relation between days of RDW and Need	
	for Renal replacement therapy	53
(16)	Comparison between RDW and Outcome	- 4
	measures using ROC curve	54
(17)	RDW ROC curve at admission day	55

List of Figures

Figure	Title	Page
(1)	The host inflammatory response and the development of septic shock	14
(2)	Distribution of the studied cases according to sex	32
(3)	Source of infection	34
(4)	SCVO2 (central venous oxygenation) at day of admission with others days	36
(5)	CVP (central venous pressure) at day of admission with others days	37
(6)	Lactate level at day of admission with others days.	37
(7)	Haemoglobin at day of admission with others days	39
(8)	at day of admission and others days.	40
(9)	CRP at day of admission and others days	40
(10)	Urea at day of admission and others days	41
(11)	Creatinine at day of admission and others days	41
(12)	30 days mortality	42
(13)	Length of ICU stay	43
(14)	Secondary outcome (need for MV, readmission, inotrope, vasopressors and RRT)	43
(15)	Relation between RDW and 30 days mortality during ICU	
		45

Figure	Title	Page
(16)	Relation between RDW and need for mechanical ventilation during ICU	45
(17)	Relation between RDW and Need for readmission	47
(18)	Relation between RDW and need for inotropes	47
(19)	Relation between days of RDW and Need of vasopressors	51
(20)	Relation between RDW and need for renal replacement therapy during ICU	51
(21)	ROC curve of RDW	54

Introduction

Sepsis is life threatening organ dysfunction caused by dysregulated host response to infection (Singer et al., **2016**). Early classification of patients presenting with sepsis by means of objective scoring systems is desirable to determine the prognosis of patients However, none of the existing scoring systems has fulfilled all expectations. The most commonly used scoring system is The Sequential Organ Failure Assessment score, or just SOFA score, is used to track a patient's status during the stay in an intensive care unit (ICU) The SOFA score is a scoring system to determine the extent of a person's organ function or rate of failure (Vincent et al., 1996). Assume baseline SOFA score in patients without known preexisting organ of dysfunction while SOFA score ≥ 2 points associated with overall mortality risk of about 10% in general hospital population with suspected infection.

While septic shock (Singer et al., 2016) known as sepsis with underlying circulatory, cellular and metabolic abnormalities severe enough to substantially increase mortality, clinically defined as persistent hypotension requiring vasopressors to maintain mean arterial pressure $(MAP) \ge 65 \text{ mm Hg and serum lactate level} \ge 2 \text{ mmol/L } (18)$

mg/dL) despite adequate volume resuscitation associated with hospital mortality $\geq 40\%$.

The red blood cell distribution width (RDW) represents an index of the heterogeneity of the erythrocytes (anisocytosis), which is calculated by dividing the standard deviation of erythrocyte volume by the mean corpuscular volume (MCV) and multiplying by 100 to express the result as a percentage (Morris et al., 2001).

For several decades, RDW has been typically used in combination with the MCV to differentiate the cause of underlying anemia in clinical practice (**Demir et al., 2002**).

The mechanism of elevated RDW in these patients with sepsis is not known, But it has been suggested that inflammatory process is associated with elevated RDW and it has been reported that elevated RDW is associated with inflammatory markers such as interleukin 6 and tumor necrosis factor and pro-inflammatory cytokines could suppress the maturation of RBCS and decrease the half-life of RBCS which in turn results in elevated RDW (Bazick et al., 2011).

Sepsis has a great impact on CBC result and red cell distribution width (RDW) is widely available to clinicians because it is routinely reported as part of the complete

blood count. Recently, highly significant associations have been described between RDW value and all causes of noncardiac and cardiac mortality in patients with coronary artery disease, acute and chronic heart failure, peripheral artery disease, stroke, pulmonary embolism, and pulmonary artery hypertension (Felker et al., 2007). Moreover, several studies have reported that RDW shows the predictive value of all-cause mortality in critically ill or intensive care unit (ICU) patients (Bazick et al., 2011).

Aim of the Work

The aim of the work is to evaluate the RDW as a prognostic marker for septic patients regarding mortality, length of stay and duration of mechanical ventilation.

Review of Literature

Infectious diseases are a global health problem, causing many deaths per year. Respiratory infections as well as diarrhea, malaria, measles, and HIV/AIDS are major causes of morbidity and mortality worldwide. Sepsis is also one of the world's leading causes of death with at least 19 million cases every year, the majority in low- and middle-income countries (Adhikari et al., 2010).

The incidence is rising for various reasons. Even with appropriate antibiotics, immediate fluid resuscitation, and intensive care, patients can quickly deteriorate into septic shock leading to multiple organ failure and death. Some patients die within the first days of the early acute inflammatory phase, but the majority die after several days from secondary infections caused by profound immunosuppression. The pathophysiology of sepsis, where many different immune cells, inflammatory mediators, and coagulation factors are involved, remains incompletely understood (Baker et al., 2011).

Many of the signs and symptoms that are associated with infectious diseases are a direct manifestation of the host immune response. These signs result from different

leukocytes and their metabolites in the immune system, which attempt to kill the invading pathogen. For the host, the challenge with infections is to recognize the foreign invaders and to direct the appropriate immune response effectively without inflicting self-damage. The body uses many different mechanisms to avoid such inappropriate responses, but occasionally this mechanism fails—causing severe tissue damage and death (Angus et al., 2013).

Risk factors for sepsis and septic shock are many and well-known, including underlying health status (e.g., the acquired immunodeficiency syndrome (AIDS) and chronic obstructive pulmonary disease (COPD), cancer), age and the use of immunosuppressive therapy (Angus et al., 2001).

Definitions

The Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM) proposed a new definition of sepsis, termed Sepsis-3. The new proposal defines sepsis as life-threatening organ dysfunction caused by a dysregulated host response to infection (Seymour et al., 2016). The new definition abandoned use of host inflammatory response syndrome criteria (SIRS) in identification of sepsis and eliminated the term severe sepsis.

An earlier sepsis definition, Sepsis-1, was developed at a 1991 consensus conference (Bone et al., 1992) in which SIRS criteria were established. Four SIRS criteria defined, namely tachycardia (heart rate >90 were beats/min), tachypnea (respiratory rate >20 breaths/min), fever or hypothermia (temperature >38 or <36 °C), and leukocytosis or leukopenia, (white blood cells >1, 2000/mm3, <4, 000/mm3). Patients who met two or more of these criteria fulfilled the definition of SIRS, and Sepsis-1 was defined as infection or suspected infection leading to the onset of SIRS. Sepsis complicated by organ dysfunction was termed severe sepsis, which could progress to septic shock, defined as "sepsis-induced hypotension persisting despite adequate fluid resuscitation." A 2001 (Levy et al., 2003) Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM) recognized the limitations with these definitions, but did not offer alternatives due to a lack of supporting evidence. However, they did expand the list of diagnostic criteria, resulting in the introduction of Sepsis-2. Therefore, in order to be diagnosed with sepsis under the Sepsis-2 definition, as with Sepsis-1, an individual must have at least 2 SIRS criteria and a confirmed or suspected infection (Vincent et