

Faculty of Engineering Department of Mechanical Power Engineering

Liquid Fuel Combustion in a Cross-Flow of Multiple Opposing Gaseous Fuel Jets

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of Master of Science in Mechanical Power Engineering

By

Ahmed Mounir Abd El-Moneim Hasan Fahim

B.Sc. in Mechanical Power Engineering, 2010

Supervised by

Prof. Dr. Mahmoud Mohamed Kamal

Mechanical Power Engineering Department
Faculty of Engineering
Ain Shams University

Dr. Ahmed Taher Hussin

Mechanical Power Engineering Department
Faculty of Engineering
Ain Shams University

Cairo

2019

Faculty of Engineering Department of Mechanical Power Engineering

Liquid Fuel Combustion in a Cross-Flow of Multiple Opposing Gaseous Fuel Jets

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of Master of Science in Mechanical Power Engineering

By

Ahmed Mounir Abd El-Moneim Hasan Fahim

B.Sc. in Mechanical Power Engineering, 2010

Supervisors

Title, Name & Affiliation	<u>Signature</u>
Prof. Mahmoud Mohamed Kamal	
Mechanical Power Engineering Department	
Ain Shams University	
Dr. Ahmed Taher Hussin	
Mechanical Power Engineering Department	
Ain Shams University	•••••

Date: 17 / 08 / 2019

Faculty of Engineering Department of Mechanical Power Engineering

Liquid Fuel Combustion in a Cross-Flow of Multiple Opposing Gaseous Fuel Jets

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of Master of Science in Mechanical Power Engineering

By

Ahmed Mounir Abd El-Moneim Hasan Fahim

B.Sc. in Mechanical Power Engineering, 2010

Examiners Committee

Title, Name & Aimilation	<u>Signature</u>
Prof. Mahmoud Abd El-Fattah El-Qady Professor of Mechanical Power Engineering Al-Azhar University	
Prof. Adel Abd El-Malek El-Ahwany Professor of Mechanical Power Engineering Ain Shams University	
Prof. Mahmoud Mohamed Kamal Professor of Mechanical Power Engineering Ain Shams University	

Date: 17 / 08 / 2019

RESEARCHER DATA

Name : Ahmed Mounir Abd El-Moneim Hasan Fahim

Date of Birth : 26nd February, 1989

Place of Birth : Giza, Egypt

Last Academic Degree : Bachelor of Science

Field of Specialization : Mechanical Power Engineering

Issuing University : Faculty of Engineering - Ain Shams University

Issuing Date : June, 2010

Current Job : Aircraft Maintenance Engineer

DISCLAIMER

This thesis is submitted as partial fulfillment of M.Sc. degree in Mechanical Power

Engineering, Faculty of Engineering, Ain Shams University.

The work included in this thesis was carried out by the author during the Period from

2015 to 2018, and no part of it has been submitted for a degree or qualification at any

other scientific entity.

The candidate confirms that the work submitted is his own and that appropriate credit

has been given where reference has been made to the work of others.

Name: Ahmed Mounir Abd El-Moneim

Signature:

Date:

17 / 08 / 2019

3

ACKNOWLEDGMENT

The author is grateful for the contributions of his advisors Prof. Dr. Mahmoud Mohamed Kamal and Dr. Ahmed Taher Hussin who added to my graduate experience with their expertise and patience. I appreciate their extensive knowledge, and their help in writing reports. Also, I am indebted to Mechanical Power Department which is controlling of the Combustion Laboratory. It would not be possible to finish the study without the help of the technician of the Combustion Laboratory, thanks to his real effort in solving implementation problems throughout the test setup procedure. And I am grateful to my technical team who shared me building up the test rig and their assist in experiments. At the end, I appreciate my family's support through my entire life, specially through these years, who stood with me through adversities and bad times.

ABSTRACT

Over the past years, levels of exhaust emissions have been increased due to fossil fuels usage continuously with energy demand's growth. An Investigation on the effect of cross flow of multiple opposing gaseous fuel jets on liquid fuel burning was performed that could be retrofit into an existing or future manufactured gas turbine engines to provide an energy solution to problem of growing levels of carbon emissions. The test rig was designed and built with a combustion chamber provided with a dual fuel burner. The developed test rig allowed the burning of liquid fuel in a cross flow of gaseous fuel. While the air was co-axially introduced in a double swirl flow field, the combustion efficiency and flame length were recorded in conjunction with varying the number of opposing jets.

Results verified that the average temperature of the product gases has been generally increased by $21.8 \sim 52.1$ % than the original case of burning diesel oil. Local temperature drop, just after entering opposing jets gases, decreased with increasing the number of opposing jets as a result of lower velocity ratio, which in turn affected the shear rates and mixing between hot gases and cold cross flow gaseous fuel. However, overall fuel to air ratio has been increased with same quantity of air, the cross-flow interaction made an improvement in exhaust emissions than without cross flow. The analysis of exhaust emissions attained using cross flow technique generally, has a positive effect on concentration of Carbon Monoxides (CO) by $6.7 \sim 68.4$ % (decreased from 3065 ppm to 968 ppm) and Nitrogen Monoxide (NO) by $15.7 \sim 63.1$ % (decreased from 19 ppm to 7 ppm) and percentage of Hydrocarbons (C_xH_y) in the product gases by $26.6 \sim 46.6$ % (decreased from 0.15% to 0.08%).

Keywords: -Combustion, opposing jet, cross flow, diffusion flames

TABLE OF CONTENTS

Subject	Page
RESEARCHER DATA	2
DISCLAIMER	3
ACKNOWLEDGMENT	4
ABSTRACT	5
TABLE OF CONTENTS	6
LIST OF FIGURES	9
LIST OF TABLES	10
NOMENCLATURE AND ABBREVIATIONS	11
CHAPTER 1 - INTRODUCTION	14
1.1 General	14
1.2 Thesis Organization	15
CHAPTER 2 - LITERATURE REVIEW	17
2.1 General	17
2.2 Coaxial Swirl Flow for Non-Premixed Flame	17
2.3 Opposing Jets	19
2.4 Cross Flow	22
2.5 Other Gaseous Fuels	26
2.6 Aim of the Current Research	29
CHAPTER 3 - EXPERIMENTAL SETUP	30
3.1 General	30
3.2 Description of Test Rig	30
3.3 Liquid Fuel Supply System	32

Subject	Page
3.4 Gaseous Fuel Supply System	35
3.5 Combustor Description	35
3.6 Measuring Equipment	36
3.6.1 Air supply flow rate measurement	36
3.6.2 Liquid fuel flow measurement	37
3.6.3 Gaseous fuel flow measurement	37
3.6.4 Temperature measuring tools	37
3.6.5 Product gas analyzer	38
3.7 Test Rig Setup and Constraints	39
CHAPTER 4 - RESULTS AND DISCUSSION	40
4.1 General	40
4.2 Test Rig Verification	40
4.3 Liquid Fuel Combustion	45
4.4 Local Temperature Distribution of Liquid Fuel Burning in addition of Gaseous opposing jets	47
4.5 Exit Temperature Profile	58
4.6 Flame Length	59
4.7 Product Gas Analysis	60
CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS	62
5.1 General	62
5.2 Conclusions	62
5.3 Recommendations for Future Work	64
REFERENCES	66
APPENDIX A: PHYSICAL PROPERTIES	71

Subject	Page
A.1: Physical Properties of Diesel Oil	71
A.2: Physical Properties of Gaseous LPG Fuel	71
A.3 Physical Properties of Water	72
A.4 Physical Properties of Air	72
APPENDIX B: CALIBRATION DATA	73
B.1 Calibration Data of the Air Orifice	73
B.2 Calibration Data of the LPG Fuel Rotameter	74
B.3 Calibration of The Gas Analyzer	75
B.4 Calibration for Thermocouple	76
APPENDIX C: UNCERTAINTY ANALYSIS	78
C.1 General	78
C.2 Uncertainty Analysis for Air Supply Mass Flow Rate	78
C.3 Uncertainty Analysis for Liquid Fuel Mass Flow Rate	79
C.4 Uncertainty Analysis of Gaseous Fuel Mass Flow Rate	80
Measurements	
APPENDIX D: THERMOCOUPLE RADIATION CORRECTION	81
ANALYSIS	
D.1 General	81
D.2 Thermocouple Reading Correction	81
D.3: EES Code	83
APPENDIX E: FLOW MEASUREMENT CALCULATIONS	84
E.1 General	84
E.2 Air Supply Flow Rate Measurement	84
E.3: Liquid Fuel Flow Measurement	85

LIST OF FIGURES

Subject	Page
Figure 2.1 Effect of coaxial air on flame base with (a) zero swirl and (b) swirl	17
Figure 2.2 a) Main stream vortices, b) predicted stream lines and velocity vectors	20
Figure 2.3 Main stagnation vortices	21
Figure 2.4 The burner construction details and the normal/inverse triple flame basic configurations	24
Figure 2.5 A schematic drawing of large-scale vortical structures produced by a circular jet exhausting normally into a cross flow	25
Figure 2.6 A schematic drawing of large-scale vortical structures produced by a circular jet exhausting normally into a cross flow	26
Figure 3.1 Test Rig Schematic	31
Figure 3.2 Air Vanned Double Swirler Construction	31
Figure 3.3 Liquid Fuel Supply System	32
Figure 3.4 A 60° Cone Liquid Fuel Nozzle	33
Figure 3.5 SUNTEC AN67C Oil Gear Pump	33
Figure 3.6 Gaseous Fuel Supply System Schematic	34
Figure 3.7 Combustion Chamber ports distribution	35
Figure 3.8 Gaseous Fuel Opposing Jets in the combustion Chamber	36
Figure 3.9 Liquid Fuel Reservoir with a scaled sight glass	37
Figure 3.10 Digital Controller	38
Figure 3.11 Temperature Measurement Grid Locations (Half View)	39
Figure 4.1 Local Temperature Distribution of Diesel oil burning	41
Figure 4.2 Liquid fuel atomization and 60°cone of diesel oil	45
Figure 4.3 Swirler Effect on Combustion of Diesel Oil only without	46
Opposing Gaseous Fuel Jet	
Figure 4.4 Temperature Distribution for Combustion of Diesel Oil only	47
Figure 4.5 Schematic of typically, evenly distributed 12 opposing gaseous jets (Air Flow Inside View)	48
Figure 4.6 Combustion of opposing Gaseous Fuel (LPG) jets only	48
Figure 4.7 Temperature Distribution for Combustion of Diesel Oil in addition to 2 Opposing LPG Fuel Jets	50
Figure 4.8 Temperature Distribution for Combustion of Diesel Oil in addition to 4 Opposing LPG Fuel Jets	51

Subject	Page
Figure 4.9 Temperature Distribution for Combustion of Diesel Oil in	51
addition to 6 Opposing LPG Fuel Jets	
Figure 4.10 Temperature Distribution for Combustion of Diesel Oil in	52
addition to 8 Opposing LPG Fuel Jets	
Figure 4.11 Temperature Distribution for Combustion of Diesel Oil in	53
addition to 12 Opposing LPG Fuel Jets	
Figure 4.12 Flame Local Temperature Contours of dual fuel combustion of	54
Diesel oil with opposing gaseous fuel	
Figure 4.13 Local temperature drop in Air Flow at Station no. 3	57
Figure 4.14 Temperature profile at Station no. 9	58
Figure 4.15 (a) The recorded flame length for visible flame. (b) flame	59
length increase when using opposing gaseous fuel (LPG) jets.	
Figure 4.16 CO Concentration [ppm]	60
Figure 4.17 NO Concentration [ppm]	60
Figure 4.18 C _x H _y Concentration Percentage	61
Figure B1 Calibration for Orifice Meter	73
Figure B2 Calibration for LPG Rotameter	74
Figure B3 Calibration for Gas Analyzer	75
Figure B4 Calibration for Thermocouple	76
Figure D1 Sources of Error in Gas Temperature Measurement	81
Figure E.1 Liquid Fuel Reservoir with a scaled sight glass	85

LIST OF TABLES

Subject	Page
Table 4.1: Opposing Jet Sets Matrix for Experiments	49
Table A.1: Physical Properties of Diesel Oil	71
Table A.2: Physical Properties of Gaseous LPG Fuel:	71
Table A.3 Physical properties of water	72
Table A.4 Physical Properties of Air	72
Table B.1 Calibration Data of the Air Orifice	73
Table B.2 Calibration Data of the LPG Fuel Rotameter	74

NOMENCLATURE AND ABBREVIATIONS

BP British Petroleum

CBG Compressed Biogas

LPG Liquefied Petroleum Gas

LPM Liter per Minute

PM particulate matter

VGV Variable Guide Vanes

VR Velocity Ratio (v_{jet}/v_{∞})

Symbols:

*A*_o Orifice Area [m]

C Coefficient of Discharge

 C_p Specific heat at constant pressure [Kcal/Kg. $^{\circ}$ C]

 C_v Specific heat at constant volume [Kcal/Kg. $^{\circ}$ C]

D Combustor Diameter [m]

 D_1 Diameter of Reservoir [m]

Diameter of Sight Glass Tube [m]

Dorifice or d Diameter of Orifice [m]

 D_{pipe} Pipe Diameter [m]

g Gravitational Acceleration [m/s²]

L Flame Length [m]

 L_{Diesel} Flame Length for diesel oil combustion only [m]

 L_{jet} Flame Length for diesel oil combustion with a cross flow of

opposing gaseous fuel jets [m]

 \dot{m}_a Mass flow rate of Air [Kg/s]

 \dot{m}_1 Mass flow rate of Liquid Fuel [Kg/s]

 Q°_{act} Actual Volume Flow Rate [m³/s]

 Q°_{th} Theoretical Volume Flow Rate [m³/s]

r Radius [m]

R Result function

Re Reynolds Number

t Time [s]

 T_{max} Maximum local gas temperatures [°C] T_{min} Minimum local gas temperatures [°C]

 v_{∞} Mean velocity of hot gases stream in combustor that produced from

diesel oil burning

 v_{jet} Gaseous fuel velocity exiting opposing jets

 \dot{V}_I Volume flow rate of Liquid Fuel [m³/s]

w Uncertainty Value

x Combustor Axial Distance [m] / Independent Variable

Greek Symbols

 β Orifice Diameter Ratio

 Δh Head difference in manometer [m]

 ΔP Press. Diff. across the orifice plate [Pa]

 ΔT_{Jets} Temperature difference [°C]

 Δx Height Decrease of Liquid Fuel [m]

 ρ_a Air Density [Kg/m³]

 ρ_l Liquid Fuel Density [Kg/m³]

 ρ_w Water Density [Kg/m³]

 μ_a Dynamic Viscosity of air [Pa.s]

 μ_w Dynamic Viscosity of Water [Pa.s]