

Effectiveness of Intrathecal Administration of Bupivacaine with Fentanyl versus Nalbuphine for Elective Cesarean Section

Thesis

Submitted for Partial Fulfillment of M. Sc. Degree in Anesthesia, Intensive Care and Pain Management

By

Nada Mohamed Bahaa Eldin Mostafa Abdel Rahman M.B.B.Ch

Supervised by

Prof. Dr. Khaled Mohammed Maghawry

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine Ain Shams University

Prof. Dr. Raham Hasan Mostafa

Assistant Prof. of Anesthesia, Intensive Care and Pain Management Faculty of Medicine Ain Shams University

Dr. Ahmed Wagih Ezzat

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to Allak, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Khaled Mohammed**Maghawry, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made completion of this work possible.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Raham Hasan Mostafa**, Assistant Prof. of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Wagih Ezzat**, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine Ain Shams University, for his great help, active participation and guidance.

I would like to express my sincere thanks to my **Mother, Father, Brothers and all my family** for their support till this work was completed; my love and thanks to my **Tousband** for his encouragement and support all the way.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Nada Mohamed Bahaa

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	9
Review of Literature	
Physiological and Anatomical Changes with Pre	gnancy 10
Anatomy of the Spinal Cord and the Vertebral & Spinal Anesthesia	
Pharmacology of Drugs Used In Intrathecal Inje	ection 43
Patients and Methods	60
Results	70
Discussion	92
Summary	101
Conclusion	104
References	105
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Nerve fibers classification:	26
Table (2):	Comparison between fentang nalbuphine regarding demographic	
Table (3):	Comparison between fentant nalbuphine according to mean arts pressure (mmHg)	erial blood
Table (4):	Comparison between fentant nalbuphine according to mean how (beat/min)	eart rate
Table (5):	Comparison between fentant nalbuphine according to respiration (bearth/min)	tory rate
Table (6):	Comparison between fentang nalbuphine according to O2% satura	,
Table (7):	Comparison between fentant nalbuphine according to onset of block and onset of complete motor block.	f sensory
Table (8):	Comparison between fentant nalbuphine regarding time to dermatomal level	reach T4
Table (9):	Comparison between fentant nalbuphine according to visual score	analogue
Table (10):	Comparison between fentant nalbuphine according to effective time (min)	analgesic
Table (11):	Comparison between fentant nalbuphine according to patients analgesia.	needs of

List of Tables

Table No.	Title	Page No.
Table (12):	Comparison between nalbuphine according to analgesia of paracetamol (g.	to total rescue
Table (13):	Comparison between nalbuphine according to perfects	perioperative side
Table (14):	Comparison between nalbuphine according to feta	· ·

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Forces on the spine of a pregnant wo	 man 17
Figure (2):	Nerve roots exit the vertebral columnities corresponding vertebrae a supply	and their
Figure (3):	Meninges of the spinal cord	22
Figure (4):	The structure of a lumbar vertebra	23
Figure (5):	Blood supply of the spinal cord	25
Figure (6):	Mid-line approach and para approaches of spinal anesthesia	
Figure (7):	Chemical structure of local anesthetic	cs43
Figure (8):	Bar chart between fentanyl and na according to age (years).	-
Figure (9):	Bar chart between fentanyl and na according to ASA.	_
Figure (10):	Bar chart between fentanyl and na groups according to duration till birt	-
Figure (11):	Comparison between fentany nalbuphine according to mean arter pressure (mmHg)	rial blood
Figure (12):	Comparison between fentany nalbuphine according to mean he (beat/min).	eart rate
Figure (13):	Comparison between fentany nalbuphine according to respirat (bearth/min).	ory rate
Figure (14):	Comparison between fentany nalbuphine according to O2% saturations.	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (15):	Bar chart between fentanyl and according to onset of sensory block of complete motor block (min)	k and onset
Figure (16):	Comparison between fenta nalbuphine according to visual score.	l analogue
Figure (17):	Bar chart between fentanyl and according to effective analgesic time	-
Figure (18):	Bar chart between fentanyl and according to patients needs of anal	•
Figure (19):	Bar chart between fentanyl and according to total rescue analgesia	-
Figure (20):	Bar chart between fentanyl and according to perioperative side effe	-
Figure (21):	Bar chart between fentanyl and according to Appar Score	•

List of Abbreviations

Abb. Full term

<i>пе</i>	Microgram
	American Society of Anesthesiologists
	Central Nervous System
	Cardiac output
	Cardiopulmonary Resuscitation
	Combined Spinal Epidural
	Cerebrospinal Fluid
	Central venous pressure
	Functional Residual Capacity
	General Anesthesia
<i>GFR</i>	Glomerular filtration rate
	International Normalized Ratio
<i>IT</i>	Intra-thecal
<i>ITP</i>	Immune Thrombocytopenic Purpura
	Inferior Vena Cava
<i>LA</i>	Local Anesthesia / Anesthetics
<i>LMWH</i>	Low Molecular Weight Heparin
LOS	Lower oesophageal sphincter
<i>MAC</i>	Minimal Alveolar Concentration
<i>MAP</i>	Mean arterial Blood pressure
	Minute Ventilation
PCA	Patient-controlled Analgesia
PDPH	Post-dural Puncture Headache
SVR	Systemic vascular resistance
SpO_2	peripheral capillary oxygen saturation
TV	Tidal volume
V.D	\dots Vasodilatation
<i>VAS</i>	Visual analogue score
	Venous return

Abstract

Aim of the Study:

The study aims to compare the intraoperative and postoperative analgesic efficacy of Fentanyl versus Nalbuphine when used with intrathecal injection of 0.5% hyperbaric bupivacaine in spinal anesthesia in patients undergoing elective cesarean section, the hemodynamics changes and occurrence of post-operative side effects.

Patients and Methods:

In our study, Fifty adult females underwent elective cesarean section in obstetrics and gynecology Ain Shams university hospital (El Demerdash) were randomly allocated into 2 groups (25 patients each)

Group A: (n = 25): patients will receive 25microgram (0.5ml) fentanyl with 10mg of 0.5% hyperbaric bupivacaine (2ml) intrathecal.

Group B: (n=25): patients will receive 0.8mg (0.4ml) nalbuphine (to be completed to 0.5ml by adding 0.1ml of normal saline in order to have the same volume of drug administered in both groups) with 10mg of 0.5% hyperbaric bupivacaine (2ml) intrathecal.

Keywords: Post-dural Puncture Headache - peripheral capillary oxygen saturation - Post-dural Puncture Headache

INTRODUCTION

pinal anesthesia is the most popular procedure in the field of anesthesiology (Naaz et al., 2017).

The use of opioids in sub-arachnoid block started in 1979; hence forth they have been used either as solitary agents or, more commonly, combined with local anesthetics. When combined, opioids act on spinal cord receptors while local anesthetics block neuro-axonal transmission (Raghuraman, 2017).

Fentanyl is a lipophilic opioid acting as u agonist with a rapid onset following intrathecal injection without migrating to the 4th ventricle which might otherwise cause respiratory depression. Nalbuphine hydrochloride is a mixed agonist antagonist. It produces analgesia and sedation through agonism at the kappa receptor and lesser side effects through binding the μ receptor competitively displacing other μ antagonists (partial antagonist) (Gurunath and Madhusudhana, 2018).

Intrathecal nalbuphine versus intrathecal fentanyl as an additive with bupivacaine for orthopedic surgery of lower limbs was studied; and the study concluded that the duration of rescue analgesia was statistically significant prolonged when 2mg of nalbuphine was given intrathecally as compared to 25µg of fentanyl with both added to 17.5mg of hyperbaric bupivacaine. (Gupta et al., 2016).

Nalbuphine exhibits a ceiling effect to analgesia, comparing 0.2 mg of intrathecal morphine with different doses of intrathecal nalbuphine (0.2,0.8, 1.6 mg) in elective cesarean section concluded that intrathecal nalbuphine 0.8mg provides good intraoperative and early postoperative analgesia without side effects (no postoperative nausea and vomiting or pruritus) and that nalbuphine 1.6 mg did not increase efficacy but increased the incidence of complications. Concluding that 0.8mg as the most effective safe dose even in cesarean section patients (Culebras et al., 2000).

AIM OF THE WORK

The study aims to compare the postoperative analgesic efficacy of Fentanyl versus Nalbuphine when used with intrathecal injection of 0.5% hyperbaric bupivacaine in spinal anesthesia in patients undergoing elective cesarean section as the primary outcome, also compares intraoperative hemodynamic changes and postoperative side effects as the secondary outcome.

Chapter 1

PHYSIOLOGICAL AND ANATOMICAL CHANGES WITH PREGNANCY

During pregnancy, anatomical and physiological changes occur to meet the increased metabolic needs, to permit appropriate development of fetus and to prepare the body for childbirth.

Cardiovascular System

It is a basic physiological fact that arterial blood pressure is generated by the left ventricle ejecting blood into the systemic vasculature, which acts as a resistance to cardiac output. Within the organs, the arterial vasculature undergoes extensive branching and the vessel diameters decrease. The smaller arteries and arterioles serve as the chief resistance vessels, and through changes in their diameter, serve to regulate systemic vascular resistance and organ blood flow. In hemodynamic terms, the mean arterial pressure (MAP) can be described by the following equation MAP = (CO x SVR) + CVP. Where CO = cardiac output, SVR = systemic vascular resistance, and CVP = central venous pressure. Therefore, increases in CO, SVR or CVP will lead to increases in MAP (Klabunde, 2012).

During pregnancy, specifically by 8^{th} week of gestation, there are increased levels of estrogen and progesterone, causing peripheral vasodilatation (V.D.) and a resultant decrease in systemic vascular resistance (SVR). Furthermore, cardiac output (CO) increases in order to maintain adequate blood pressure (BP = CO × SVR). Blood volume increases, beginning from 6 to 8 weeks of gestation, to reach a maximum increase of about 20% by mid-third trimester *(Chestnut et al., 2014)*.

At 20 weeks of gestation, the gravid uterus begins to cause mechanical compression of inferior vena cava (IVC) and descending aorta in supine position. Consequently, leading to a decrease in venous return (VR) and CO resulting in maternal hypotension and fetal compromise. As a compensatory mechanism for this aortocaval compression, both the sympathetic tone and the HR increase and blood from lower limb is shunted to the right side of heart through vertebral plexus and azygos veins (*Lanni et al.*, 2002).

Anesthetic implications

On one hand; the aforementioned expansion in blood volume provides some reserve for the normal blood loss during delivery (about 300–500 ml for vaginal delivery and 600–1000 ml for cesarean delivery) and peripartum hemorrhage.