Comparative Study of the Effectiveness of Chronic Aerobic Exercise and Irisin on Atherosclerotic Risk in a Rat Model of Type 2 Diabetes Mellitus

Thesis

Submitted in partial Fulfillment of M.D. Degree in Basic Medical Science (Physiology)

By

Yasmine Gamal Sabry Sherif

Assistant Lecturer in Medical Physiology Department Faculty of Medicine, Ain Shams University

Supervised by

Prof. Fatma Mohammad Lebda

Professor of Physiology Faculty of Medicine, Ain Shams University

Prof. Mona Ahmed Ahmed

Professor of Physiology
Faculty of Medicine, Ain Shams University

Dr. Mona Kamal ElDin Shawky Ismail

Lecturer of Physiology Faculty of Medicine, Ain Shams University

Dr. Walaa Baher Mostafa

Lecturer of Histology and Cell biology Faculty of Medicine, Ain Shams University

2019

First of all, I thank **Allah** for blessing this work as a part of his generous help throughout my life.

I would like to express my sincere gratitude and deepest thanks to **Prof. Fatma Mohammad Lebda**, Professor of Physiology, Faculty of Medicine, Ain Shams University, for her scientific support, judicious guidance, generous help and valuable supervision through the whole work. To her, I am deeply indebted and admit I am so much privileged and honored to have her as my supervisor. I really owe her more than I can express.

I would like to display my indebtedness to **Prof. Mona Ahmed Ahmed,** Professor of Physiology, Faculty of Medicine, Ain Shams
University, for her wise council, expert guidance, faithful advice, keen supervision and valuable instructions which helped me to overcome many difficulties.

I would like to display my indebtedness to *Dr. Mona Kamal El-Din Shawky Ismail*, Lecturer of Physiology, Faculty of Medicine, Ain Shams University, for her limitless help, kind encouragement and generous assistance throughout the whole work.

I would, also, like to acknowledge **Dr. Walaa Baher Mostafa,** Lecturer of Histology and Cell biology, Faculty of Medicine, Ain Shams University, for her useful and helpful contribution in this work.

I would, also, like to acknowledge my deepest gratitude and appreciation to **Prof. Dr. Bataa Mohammad El-kafoury,** Head of Physiology Department, Faculty of Medicine, Ain Shams University, for her support and encouragement.

Finally, I would like to express my deepest gratitude to all my family and all who did help me and supported me throughout this work.

Yasmine Gamal Sabry Sherif

List of Contents

Subject	Page No.
List of Tables	i
List of Figures	vii
List of Abbreviations	ix
Introduction	1
Aim of the Work	3
Review of Literature	
Diabetes Mellitus	4
Exercise	27
Irisin	39
Materials and Methods	54
Results	93
Discussion	123
Summary	149
Conclusion	154
Appendix	157
References	179
Arabic Summary	—

List of Tables

Table No	. Title Page No.
Table (1):	Nutrient composition of different food ingredients
Table (2):	Composition of 100 grams of high fat diet 58
Table (3):	Preparation of MDA Standards79
Table (4):	Changes in the body weight (BW), body mass index (BMI), and their percent changes (% change), perirenal fat weight (PF) and perirenal fat index (PFI) in the different studied groups
Table (5):	Changes in the systolic blood pressure (SBP), diastolic blood pressure (DBP) and their percent changes (% change) in the different studied groups
Table (6):	Changes in the mean blood pressure (MBP), percent of MBP change (% change), and serum nitrite level in the different studied groups
Table (7):	Changes in the fasting blood glucose (FBG), plasma insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) in the different studied groups
Table (8):	Changes in the serum levels of triglycerides (TG), total cholesterol (TC), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C) and atherogenic index (AI) in the different studied groups

Table (9):	Changes in the serum levels of malondialdehyde (MDA), and total antioxidant capacity (TAC), and plasma levels of tumor necrosis factor- α (TNF- α) in the different studied groups
Table (10 a	and b): Histopathological scoring system of liver; showing number and frequency distribution (%) of each component examined in four different field sections in 5
	rats (20 fields/ group)121

List of Individual Tables

Table No.	Title	Page No.
Table (I):	Changes in the body weight (BV mass index (BMI), and their changes (% change), perirenal fa (PF) and perirenal fat index control group	percent at weight (PFI) in
Table (II):	Changes in the body weight (BV mass index (BMI), and their changes (% change), perirenal fa (PF) and perirenal fat index (PFI) diabetes mellitus group	percent at weight in type 2
Table (III):	Changes in the body weight (BW), be index (BMI), and their percent change), perirenal fat weight (perirenal fat index (PFI) in type 2 mellitus, exercise group.	anges (% PF) and diabetes
Table (IV):	Changes in the body weight (BV mass index (BMI), and their percent (% change), perirenal fat weight perirenal fat index (PFI) in type 2 mellitus, irisin group.	t changes (PF) and diabetes
Table (V):	Changes in the systolic blood (SBP), diastolic blood pressure (Etheir percent changes (% change) i group.	DBP) and n control
Table (VI):	Changes in the mean blood (MBP), percent of MBP chachange), and serum nitrite level in group.	nge (% n control

Table (VII):	Changes in the systolic blood pressure (SBP), diastolic blood pressure (DBP) and their percent changes (% change) in type 2 diabetes mellitus group
Table (VIII):	Changes in the mean blood pressure (MBP), percent of MBP change (% change), and serum nitrite level in type 2 diabetes mellitus group
Table (IX):	Changes in the systolic blood pressure (SBP), diastolic blood pressure (DBP) and their percent changes (% change) in type 2 diabetes mellitus, exercise group
Table (X):	Changes in the mean blood pressure (MBP), percent of MBP change (% change), and serum nitrite level in type 2 diabetes mellitus, exercise group
Table (XI):	Changes in the systolic blood pressure (SBP), diastolic blood pressure (DBP) and their percent changes (% change) in type 2 diabetes mellitus, irisin group
Table (XII):	Changes in the mean blood pressure (MBP), percent of MBP change (% change), and serum nitrite level in type 2 diabetes mellitus, irisin group
Table (XIII):	Changes in the fasting blood glucose (FBG), plasma insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) in control group
Table (XIV):	Changes in the fasting blood glucose (FBG), plasma insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) in type 2 diabetes mellitus
	group

Table (XV):	Changes in the fasting blood glucose (FBG), plasma insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) in type 2 diabetes mellitus, exercise group.	169
Table (XVI):	Changes in the fasting blood glucose (FBG), plasma insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) in type 2 diabetes mellitus, irisin group.	170
Table (XVII):	Changes in the serum levels of triglycerides (TG), total cholesterol (TC), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C) and atherogenic index (AI) in control group	171
Table (XVIII):	Changes in the serum levels of triglycerides (TG), total cholesterol (TC), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C) and atherogenic index (AI)in type 2 diabetes mellitus group	172
Table (XIX):	Changes in the serum levels of triglycerides (TG), total cholesterol (TC), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C) and atherogenic index (AI) in type 2 diabetes mellitus, exercise group	173
Table (XX):	Changes in the serum levels of triglycerides (TG), total cholesterol (TC), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C) and atherogenic index (AI) in type 2 diabetes mellitus, irisin group	174

Table (XXI):	Changes in the serum levels of malondialdehyde (MDA), and total antioxidant capacity (TAC) and plasma levels of tumor necrosis factor- α (TNF- α) in control group
Table (XXII):	Changes in the serum levels of malondialdehyde (MDA), and total antioxidant capacity (TAC) and plasma levels of tumor necrosis factor- α (TNF- α) in type 2 diabetes mellitus group
Table (XXIII):	Changes in the serum levels of malon-dialdehyde (MDA), and total antioxidant capacity (TAC) and plasma levels of tumor necrosis factor- α (TNF- α) in type 2 diabetes mellitus, exercise group
Table (XXIV):	Changes in the serum levels of malon-dialdehyde (MDA), and total antioxidant capacity (TAC) and plasma levels of tumor necrosis factor- α (TNF- α) in type 2 diabetes mellitus, irisin group

List of Figures

Figure No.	. Title Page	e No.
Figure (1):	Swimming tank containing polyviny chloride pipes	
Figure (2):	Non-invasive small animal tail bloo pressure system (NIBP200A, Biopa Systems, Inc; USA)	.c
Figure (3):	Plasma Insulin Standard Curve	70
Figure (4):	Serial dilutions of TNF-α standard	85
Figure (5):	Tumor necrosis alpha subunit (TNF-ostandard curve	
Figure (6):	Changes in the body weight (BW) an percent of BW change (% change) in the different studied groups.	e
Figure (7):	Changes in the body mass index (BMI and percent of BMI change (% change) is the different studied groups	n
Figure (8):	Changes in the perirenal fat (PF) an perirenal fat index (PFI) in the different studied groups.	nt
Figure (9):	Changes in the systolic blood pressur (SBP) and percent of SBP change (9 change) in the different studied groups	6
Figure (10):	Changes in the diastolic blood pressur (DBP) and percent of DBP change (9 change) in the different studied groups	6

Figure (11):	Changes in the mean blood pressure (MBP), percent of MBP change (% change), and serum nitrite level in the different studied groups.	106
Figure (12):	Fasting blood glucose (FBG), plasma insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) in the different studied groups.	109
Figure (13):	Serum levels of triglycerides (TG), total cholesterol (TC), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C) and atherogenic index (AI) in the different studied groups.	112
Figure (14):	Serum levels of malondialdehyde (MDA), total antioxidant capacity (TAC) and plasma levels of tumor necrosis factor- α (TNF- α) in the different studied groups	115
Figure (15):	A photomicrograph of inguinal adipose tissue	117
Figure (16):	A photomicrograph of transverse sections of aorta.	119
Figure (17):	A photomicrograph of liver sections	122

List of Abbreviations

Abbr. **Full-term ABP** : Arterial blood pressure **AGE** : Advanced glycation end products AT : Atherogenic index : AMP-activated protein kinase **AMPK BAT** : Brown adipose tissue **BMI** : Body mass index : Body weight \mathbf{BW} **CRP** : C-reactive protein **CVD** : Cardio-vascular diseases **DBP** : Diastolic blood pressure \mathbf{DM} : Diabetes mellitus **eNOS** : Endothelial nitric oxide synthase **FBG** : Fasting blood glucose **FFA** : Free fatty acids FNDC5 : Fibronectin type III domain-containing protein 5 GLUT-4 : Glucose transporter type 4 : Glycated haemoglobin HbA1c HDL-C : High density lipoprotein cholesterol **HFD** : High fat diet **HOMA-IR**: Homeostasis model assessment of insulin resistance HSL : Hormone-sensitive lipase II.-6 : Interleukin-6 LDL-C : Low density lipoprotein cholesterol : Least significant difference LSD : Mean arterial blood pressure **MBP**

MDA : Malondialdehyde

NEFA: Non-esterified fatty acids

NO : Nitric oxide

PAD : Peripheral arterial diseases

PF : Perirenal fat

PFI: Perirenal fat index

PGC1-α : Peroxisome proliferator-activated receptor:

gamma coactivator 1-alpha

PKA: Protein kinase A

PPAR : Peroxisome proliferator-activated receptors

PVC : Polyvinyl chloride pipesROS : Reactive oxygen species

SAT : Subcutaneous adipose tissue

SBP : Systolic blood pressure

STZ : StreptozotocinT1DM : Type 1 diabetes

T2DM : Type 2 diabetes mellitusTAC : Total antioxidant capacity

TC : Total cholesterol

TG : Triglycerides

TNF- α : Tumor necrosis factor- α

UCP1 : Uncoupling protein 1

VAT : Visceral adipose tissue

WAT : White adipose tissue

Introduction

Type 2 diabetes mellitus (T2DM) is a complex heterogeneous group of metabolic disorders characterized by hyperglycemia, impaired insulin action, and/or insulin secretion (*Karalliedde and Gnudi, 2014*). The major cause of morbidity and mortality in diabetes is cardiovascular disease, which is exacerbated by the associated risk factors; atherosclerosis, hypertension, dyslipidemia, and obesity (*Petrie et al., 2018*).

Animal models of T2DM have been proved to be useful to study the impact of, and to find a new therapy for, the disease. The combination of high fat-diet and low dose of streptozotocin treatment have been effectively used to generate a rat model that mimic the natural history and metabolic characteristics of the common type 2 diabetes in humans (*Gheibi et al.*, 2017a). They hypothesized that this may be the most suited model for studying the pathophysiology of T2DM and evaluating the therapeutic lines for its treatment.

Though the current development of therapeutic agents, there is no effective treatment without side effects; it is therefore necessary to find out new protective strategy. Lowcost exercise interventions were effective in improving glycemic control, lipid profile, blood pressure, and anthropometric profile factors in middle-aged and older patients with type 2 diabetes (*Mendes et al.*, 2017).