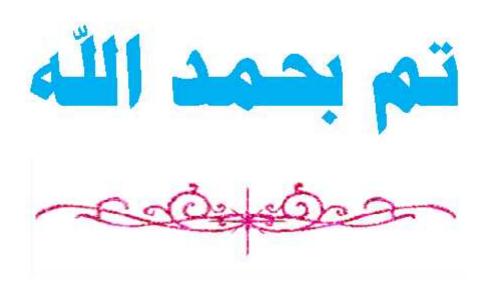


بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.


NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. MININERRINA.	
1	5/15/20	1992	- 1 3 m. f

بمكات وتكنولوجبارته

Salwa MAHMOUD Aki

Evaluation of serum visfatin level and its relation to insulin resistance in patients with inflammatory acne vulgaris

Thesis

Submitted for the Partial Fulfilment of M.Sc degree in Dermatology, Venereology and Andrology

By

Sara Ashraf Ali Hassan

M.B.B.Ch. Ain Shams University

Under supervision of

Prof. Dr. Nermeen Samy Abdel Fattah

Professor of Dermatology, Venereology and Andrology Faculty of Medicine, Ain Shams University

Dr. Marwa Yassin Soltan

Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University Cairo 2021

Acknowledgment

First and foremost, I feel always indebted to AllAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Nermeen Samy Abdel Fattah**, Professor of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Marwa Yassin Soltan**, Lecturer of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

List of Contents

List of contents	Page
List of abbreviations	i
List of tables	iv
List of figures	v
1. Introduction	1
2. Aim of the work	5
3. Review of literature	6
3.1. Chapter One: Acne vulgaris	6
3.1.1. Epidemiology	6
3.1.2. Age of onset	7
3.1.3. Etiopathogenesis	7
3.1.3.1. Release of inflammatory mediators	8
3.1.3.2. Role of TLRs	10
3.1.3.3. Follicular hyperkeratinization	11
3.1.3.4.P. Acne follicular colonization	12
3.1.3.5. Role of sebum in acne development	13
3.1.3.6. Role of hormones	15
3.1.3.7. Role of bacteria	17
3.1.3.8. Role of inflammation	18

3.1.4. Risk factors of acne vulgaris	19
3.1.4.1. Genetic factors	19
3.1.4.2. Diet	20
3.1.4.3. Smoking	21
3.1.4.4. Stress	21
3.1.4.5. Dyslipidemia	22
3.1.4.6. Insulin resistance	23
3.1.4.7. Sun exposure	23
3.1.4.8. Menstruation &pregnancy	24
3.1.5. Clinical picture	25
3.1.6. Grading of acne severity	26
3.1.7. Histological finding	27
3.1.8. Treatment	27
3.1.8.1. Topical agents	28
3.1.8.1.1. Benzoyl Peroxide	28
3.1.8.1.2. Clindamycin	29
3.1.8.1.3. Retinoids	30
3.1.8.1.4. Azelaic acid	30
3.1.8.1.5. Dapsone	31
3.1.8.1.6. Topical androgens	32
3.1.8.1.7. Metronidazole	32
3.1.8.2. Systemic agents	33

3.1.8.2.1. Isotretinoin	33
3.1.8.2.2. Spironolactone	34
3.1.8.2.3. Oral Antibiotics	35
3.2. Chapter Two: Visfatin	37
3.2.1. Structure	38
3.2.2. Distribution in organs	38
3.2.3. Functions	38
3.2.3.1. Visfatin as a cytokine	38
3.2.3.2. Visfatin as an enzyme	39
3.2.3.3. Insulin like function	40
3.2.3.4. Visfatin as antiapoptotic	41
3.2.4. Visfatin and systemic disease	42
3.2.4.1. Obesity, type 2 DM and Metabolic	42
3.2.4.2. Chronic kidney disease	44
3.2.4.3.POS	44
3.2.4.4. Preeclampsia	45
3.2.4.5. Acute coronary syndrome	46
3.2.5. Visfatin and insulin resistance	46
3.2.6. Visfatin and dermatological disease	48
4. Patients and methods	51
4.1. Sample method	51
4.2. Ethical consideration	51

4.3. Inclusion criteria	51
4.4. Exclusion criteria	52
4.5. Study procedure	53
4.6. Measurement of s.visfatin	54
4.7. Calculation of results	56
4.8. Data management and analysis	56
5. Results	58
5.1. Personal characteristics of the study group	58
5.1.1. of acne patients	58
5.1.2. of controls	61
5.2. Comparison between acne patients & controls regarding Visfatin, fasting insulin & HOMA-IR	63
5.3. Relation of visfatin serum level to BMI and IR Parameters	68
5.4. Comparison between moderate & severe acne cases regarding the s.visfatin levels	69
5.5. Correlation of serum Visfatin and HOMA-IR Scores	71
6. Discussion	74
7. Conclusions & Recommendations	82
8. Summary	84
9. References	88
Arabic summary	-

List of Abbreviations

AD	Atopic dermatitis
APCs	Acute phase cells
AppA-1	Apolipoprotein-1
AV	Acne Vulgaris
BMI	Body mass index
BP	Benzoyl Peroxide
BSA	Body Surface Area
CADs	Coronary artery diseases
CKD	Chronic kidney disease
COX	Cyclooxygenase
CRH	Corticotropin-releasing hormone
CRP	C reactive protein
DAMP	Damage associated molecular patterns
DHEA-S	Dehydroepiandrosterone sulfate
DHT	Dihydrotestosterone
ELISA	Enzyme-linked immunosorbent assay
ERK	Extracellular signal regulated kinase
FFA	Free fatty acids
FMD	Flow-mediated dilation
G6PD	Glucose-6-phosphate dehydrogenase
GAGS	Global Acne Grading System
HDL-C	High-density lipoprotein cholesterol
HETE	Hydroxyeicosatetraenoic
HOMA-IR	Homeostasis Model Assessment of Insulin Resistance
HS	Hidradenitis suppurativa

ICAM	Intercellular cells adhesion molecule
IGF-1	Insulin like growth factor-1
IL	Interleukin
IMT	Intima-media thickness
IR	Insulin receptor
LDL-C	Low-density lipoprotein cholesterol
LOX	Lipoxygenase
LXR	Liver X receptor
MCAM	Melanoma cells adhesion molecule
MCP1	Monocyte chemoattractant protein 1
MS	Metabolic syndrome
NaAD	Nicotinate adenine dinucleotide
NaMN	Nicotinic acid mononucleotide
NAMPT	Nicotinamide phosphoribosyl transferase
NF- κβ	Nuclear factor kappa beta
Nmnat	NaMN adenylyltransferase
Nrk	Nicotinamide riboside kinases
OD	Optical density
PAI	Plasminogen activator inhibitor
PAMP	Pathogen-associated molecular patterns
PASI	Psoriasis Area and Severity Index
PBEF	Pre-B cell colony enhancing factor
PCOS	Polycystic Ovary Syndrome
PPARγ	Peroxisome proliferator-activated receptor gamma
PRRs	Pattern recognition receptors
Qprt	Quinolate phosphoribosyltransferase
RBP4	Retinol binding protein-4
ROS	Reactive oxygen species
SD	Standard deviation

SGs	Sebaceous glands
SHBG	Sex hormone binding globulin
SREBP1	Sterol regulatory element-binding protein 1
TC	Total cholesterol
TLR	Toll-like receptors
TMB	Tetramethylbenzidine
TNF	Tumour necrosis factor
VCAM	Vascular cells adhesion molecule
VSMCs	Vascular smooth muscle cells

List of Tables

Table	Title	Page
1	Global Acne Grading System	27
2	The personal characteristics of acne patients	60
3	Disease characteristics in acne group	61
4	Demographic data of control subjects	62
5	Comparison of cases and controls regarding the	63
	demographic data	
6	Comparison of Visfatin, fasting glucose, insulin and	65
	HOMAIR between the two groups	
7	Relation of Visfatin to BMI and HOMA-IR in the study	69
	groups	
8	Comparison of moderate and severe cases of acne	70
	regarding visfatin and HOMA-IR	
9	Correlation of LCN2 and HOMA-IR with the	72
	demographic data and disease characteristics in acne	
	patients	
10	Visfatin levels in relation to gender, family history and	73
	course	
11	HOMA-IR values in relation to gender, family history	74
	and course	

List of Figures

Fig.	Title	Page
1	Main actions of visfatin	42
2	ROC analysis of Visfatin levels	66
3	ROC analysis of fasting insulin levels	67
4	ROC analysis of fasting insulin	68

Introduction

1.Introduction

Sebaceous glands (SGs) together with the hair follicles form the pilosebaceous units with a primary role to produce sebum. Changes in their lipid metabolism resulting in an altered amount and composition of sebum as noted in skin diseases such as acne vulgaris and atopic dermatitis (AD) (*Zouboulis et al.*, 2015). *Kovács et al.*, 2016 found that the SGs express adipokines like adiponectin, interleukin (IL) 6, resistin, leptin, serpinE1, apelin, chemerin and visfatin. This adipokines exhibit a pivotal role in the pathogenesis of inflammatory skin diseases as acne.

Visfatin, also known as Nicotinamide phosphoribosyl transferase (NAMPT) or pre-B cell colony enhancing factor (PBEF), has been identified as a new adipocytokine affecting insulin resistance by binding to the insulin receptor. Visfatin is also considered a new proinflammatory adipocytokine (*Moschen et al.*,2007). Visfatin is a biomarker related to insulin resistance and obesity (*Friebe et al.*,2011). Also, serum Visfatin level is found to be elevated in skin disease with considerable inflammation like Hidradenitis Suppurativa (HS) (*González-Lopez et al.*,2020 & Samir et al., 2020).