

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. CIVILAE HRILLA.	
1	5/15/20	1992	

بمكات وتكنولوجبارته

Microbiological characterization and antibacterial susceptibility of the bacterial pathogens recovered from cats with ophthalmic diseases

A thesis Presented by

Yasmine Mahmoud Abdelaziz Elmenshawy

(BVSc, Cairo University, 2016)

For Master's degree in veterinary sciences (BVSc) (Bacteriology, Immunology and Mycology)

Under Supervision of

Prof. Dr. Ahmed Samir

Professor of Microbiology Faculty of Veterinary Medicine Cairo University Dr. Khaled Mohamed Ali

Assistant Professor of Surgery, Anesthesiology and Radiology Faculty of Veterinary Medicine Cairo University Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Approval sheet

The examining committee approved Miss Yasmine Mahmoud Abdelaziz Elmenshawy for the Master degree in Veterinary Medical Sciences (M. V. Sc.in Microbiology) from Cairo University.

Prof. Dr. Ashraf Awad Abdeltwab

Professor and Head, Department of Microbiology

Faculty of Veterinary Medicine

Benha University

Prof. Dr. Mahmoud Elsayed Gameel Hashad

Professor and Head, Department of Microbiology

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Ahmed Samir Mohammed

Professor of Microbiology

Faculty of Veterinary Medicine

Cairo University

Dr. Khaled Mohammed Ali

Assistant Professor of Surgery, Anesthesiology and Radjology

Faculty of Veterinary Medicine

Cairo University

ASho & Amuel

Jamy)

M. Hashad

Supervision Sheet

This thesis is under supervision of:

Prof. Dr. Ahmed Samir Mohamed
Professor of Microbiology
Faculty of Veterinary Medicine
Cairo University

Dr. Khaled Mohamed Ali
Assistant Professor of Surgery, Anesthesiology and Radiology
Faculty of Veterinary Medicine
Cairo University

Name: Yasmine Mahmoud Abdelaziz Elmenshawy

Nationality: Egyptian Date of birth: 28/5/1994 Place of birth: UAE

Specialization: Microbiology

Place of birth: UAE

Thesis title:

Microbiological characterization and antibacterial susceptibility of the bacterial pathogens recovered from cats with ophthalmic diseases

Abstract

Main eye infections are typically concerned with corneal, conjunctival, and eyelid diseases, either mono-or poly-microbial infections. This study was carried out to identify bacterial isolates and their antibiotic sensitivity pattern in cats with ophthalmic diseases. A total of 78 samples were collected from 64 cats of different ages and both sexes, who had various ophthalmic problems. Samples were collected at the time of initial presentation, during follow up, and after complete recovery. The study revealed that 73 (93.5%) samples were positive among the examined samples. Both Gram-positive and Gram-negative bacteria were involved in ocular infections, yet Gram-positive bacteria were more prominent. Corynebacterium spp. (n=27), Staphylococcus aureus (n=15), Staphylococcus epidermidis (n=10), Streptococcus pyogenes (n=6), Enterococcus faecalis (n=4), E. coli (n=8), Citrobacter fruendii (n=1) and *Pseudomonas* spp. (n=2) were isolated from infected cases. Multi-drug resistant isolates were numerous, with MRSA and ESBLs present in most of the isolates. 12 strains of S. aureus were MRSAs, 6 strains of S. epidermidis were MRSEs, 7 strains of family *Enterobacteriaceae* were ESβLs. Finally, 52% of the recovered isolates were multi-drug resistant (MDR) strains. Selection of specific antibacterial therapy according to laboratory confirmation of susceptibility patterns should be implemented rapidly and efficiently.

Keywords: bacteria, cat, eye, MDR, MRSA, ESβLs.

Dedication

This thesis is dedicated to my mother, Saadia Abdelaal, spirit of my dear father, my sister and my brother. Without their endless love and support I would have never been able to complete my graduate studies.

Acknowledgement

I would like to express my sincere thanks to Prof. Dr. Ahmed Samir, professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for his supervision and invaluable constant support and constructive comments throughout the experimental and thesis work. I cannot express my heartfelt gratitude for his involvement, support, patience and enthusiasm.

I owe a large debt of gratitude to Dr. Khaled Ali, Ass. Professor of Surgery, Anesthesiology and Radiology Faculty of Veterinary Medicine Cairo University, for not only inspiring the project on which this study is based, but also for all I have gained over the years from his wide knowledge, wisdom, experience, and stimulating ideas.

Furthermore, thanks to all staff members of the department of Microbiology, department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University and all workers in the Veterinary Ophthalmology Clinic in Sheikh Zayed city for their help and support to finish this work.

Table of Contents

Title	Page
Chapter (1): Introduction	1
Chapter (2):Review of Literature	3
1. Common ophthalmic diseases of cats	3
2. Bacterial causes of ocular infection	6
2. 1. Gram-positive bacteria	8
2.2 Gram-negative bacteria	12
3. Antimicrobial resistance	17
4. Diagnosis of the ophthalmic diseases	19
Chapter (3):Published paper	23
Paper (3.1): Current Evidence of Coryneform Bacteria on The Ocular Surface of Immunocompromised Cats	23
Paper (3.2): Occurrence of Multi-drug resistant Bacteria in Cats with Ophthalmic Diseases	40
Chapter (4):Discussion	64
Chapter (5):Conclusions	70
Recommendations	72
Chapter (6):Summary	73
Chapter (7):References	75
Chapter (8):Appendix	83
Arabic summary	١

List of Tables

Table No.	Title	Page
1	Antibiogram of the recovered Gram-positive isolates	83
2	Antibiogram of the recovered Enterobacteriaceae isolates	83

List of Figures

Figure	Legand	Page
1	Intraoperative photograph showing the sampling technique from two cats underwent glaucoma surgery.	84
2	Photograph showing the clinical presentation and sampling technique from cats with keratoconjunctivitis.	84
3	Photograph showing the clinical presentation and sampling technique from cat with corneal perforation, intraocular hemorrhage and endophthalmitis.	85
4	Photograph showing the sampling technique from cat with corneal perforation and conjunctival flap follow up.	85
5	Photograph showing the sampling technique from cat after healing of the corneal defect.	85
6	Photograph showing the sampling technique from cat with follicular conjunctivitis and abscessation.	86
7	Photograph showing the sampling technique from cat conjunctival chemosis.	86
8	Photograph showing the sampling technique from cat with cat claw wound at the upper eyelid.	86
9	Photograph showing the clinical presentation of the corneal ulceration enrolled in this study.	87
10	Photograph showing the clinical presentation of the corneal sequestration enrolled in this study.	87
11	Photograph showing the clinical presentation of the corneal perforation and endophthalmitis enrolled in this study.	87
12	Photograph showing the clinical presentation of the corneal ulceration with corneal abscessation enrolled in this study.	88
13	Photograph showing the clinical presentation of the corneal sequestration, perforation enrolled in this study.	88
14	Photograph showing the clinical presentation of the corneal melting and panophthalmitis enrolled in this study.	89
15	Processing of bacteriological techniques in the safety cabinet under complete aseptic condition.	89
16	Blood agar showing non-hemolytic colonies of coagulase negative staphylococci.	90

Figure	Legand	Page
17	Blood agar showing beta-hemolytic colonies of <i>Staphylococcus aureus</i> .	90
18	Mannitol salt agar showing non-mannitol fermenting (pink) colonies of coagulase negative staphylococci.	90
19	Mannitol salt agar showing mannitol fermenting (yellow) colonies of <i>Staphylococcus aureus</i> .	91
20	Blood agar showing dew drop, beta-hemolytic colonies of <i>Streptococcus pyogenes</i> .	91
21	Bile esculin agar culture media showing esculin hydrolysis (blackish coloration) due to culture of <i>Enterococcus faecalis</i> .	91
22	Arrangement of <i>Staphylococcus spp</i> . by Gram's stain showing Gram-positive cocci arranged in irregular clusters	92
23	Arrangement of <i>Corynebacterium spp</i> . by Gram's stain showing Gram-positive nonsporeforming bacilli showing pleomorphism (100×) (V-shaped, L-shaped, palisade and Chinese letter).	92
24	Mauller Hinton agar showing various zones of inhibition after applying antibiotic sensitivity testing. Interpretation was relying on CLSI guidelines.	93
25	Mauller Hinton-blood agar showing zones of inhibition after applying antibiotic sensitivity testing on hemolytic (beta and alpha) streptococci (fastidious bacteria). Interpretation was relying on CLSI guidelines.	93
26	Mauller Hinton agar showing diagnosis Methicillin Resistant <i>Staphylococcus aureus</i> (MRSA) according CLSI guidelines. <i>S. aureus</i> showing resistance (R) to cefoxitin (FOX) and showing sensitivity (S) to vancomycin.	94
27	Oxidase test showing positive result (filter paper on left side showing purple coloration as in <i>P. aeruginosa</i>) and negative result (Filter paper on right side showing no coloration as in members of F. <i>Enterobacteriaceae</i>)	94