

بسم الله الرحمن الرحيم

00000

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

	ملاحظات:
	s and no see to be the control of the control
خامتهانی میندانی AIN SHAMS UNIVERSITY	
since 1992	<i>f</i>

تربيحات وتكنوبوجبارها

Role of dynamic contrast enhanced MRI and Diffusion Weighted Imaging in Prediction of Tumor Response to TACE in Unresectable H.C.C Patients

Thesis

Submitted for Partial fulfillment of Doctorate Degree in Radio-diagnosis

Presented by

Ahmed Ibrahim Ibrahim Nassar

M.B. B. Ch., M.Sc. Faculty of Medicine – Ain Shams University

Supervised by

Prof.Dr. Ahmed Mohamed Monib

Professor of Radio-diagnosis
Faculty of Medicine
Ain Shams University

Dr. Mohammed Sobhy Hassan

Assistant Professor of Radio-diagnosis Faculty of Medicine Ain Shams University

Dr. Ahmed Hassan Soliman

Assistant Professor of Radio-diagnosis Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

First and foremost, thanks to Allah, the most beneficial and most merciful. It is but for His mercy that we can put through in life.

I am greatly indebted to **Prof. Dr. Ahmed Mohamed Monib**, Professor of Radiology, ain shams University; for her great help, outstanding support and overwhelming kindness, and for her extreme patience, persistent guidance and understanding. She enlightened my path and guided my footsteps through many obstacles. I really owe her much.

I am also very grateful to **Prof. Dr. Mohammed Sobhy Hassan**Professor of Radiology, Ain Shams University and **Dr. Ahmed Hassan**Soliman Assistant Professor of Radiology, Ain Shams University for their support, simplicity in handling matters, stimulating suggestions, and encouragement.

And last but certainly not least, My heartful thanks to my dear wife, my sweaty daughter and my family members, for their assistance, encouragement, patience and support throughout my work.

Finally, many thanks are due to my friends and fellow colleagues in the Radiology Department. Their support and encouragement had certainly been overwhelming.

List of Contents

Title	Po	ige No.
List of Abbreviation	ons	i
List of Tables		iv
List of Figures		v
Introduction		1
Aim of the Work		4
Review of Literatu	ıre	
• Chapter 1:	MRI Anatomy of the Liver	5
• Chapter 2:	Pathological Aspects of HCC	13
• Chapter 3:	Principles of Diffusion-Weighted MR Imaging	25
• Chapter 4:	MR Imaging Techniques and Concepts of The Liver	39
• Chapter 5:	MRI Appearance of HCC	56
• Chapter 6:	The Role of Transcatheter Arterial Chemoembolization (TACE) in Treatment of HCC	
• Chapter 7:	Role of Diffusion and Dynamic MRI in Assessment of Post TACE Necrosis of HCC	103
Subjects and Meth	ods	131
Results		139
Illustrated Cases		151
Discussion		224
Summary and Conclusion		
References		
Arabic Summary.		

List of Abbreviations

Abb.	Full term
3D	Three-dimensional
	Association for the study of liver diseases
	•
	Apparent diffusion coefficient
	Alpha fetoprotein
	Arterioportal fistula
	Arterial phase hyper-enhancement
	Black-blood echo-planar imaging
	. Barcelona clinic liver cancer
CNR	Contrast-to-noise ratio.
DCE MRI	Dynamic contrast-enhanced MRI
DEB-TACE	Drug-eluting beads transarterial chemoembolization
DM	Diabetes mellitus
DWI	Diffusion-weighted magnetic resonance imaging
ETL	Echo train length
FL	Falciform ligament
FSE/TSE	Fast/turbo spin echo
GRAPPA	Generalized auto- calibrating partially parallel acquisition
GRE	Gradient echo
H.C.C	Hepatocellular carcinoma
HASTE	Half acquisition single shot turbo echo
HIV	Human immunodeficiency virus
IBR	Institutional board review
ICC	Intrahepatic cholangiocarcinoma
IP	In-phase
IVC	Inferior vena cava

List of Abbreviations Cont...

Full term Abb. IVIM Intravoxel incoherent motion **LAVA.....** Liver acquisition with volume acceleration Lga Left gastric artery **Lha**..... Left hepatic artery LHV..... Left hepatic vein LI-RADS Liver imaging-reporting and data system LR-TIV..... LR-tumor in vein LR-TR Liver imaging reporting and data system treatment response LV.....Ligamentum venosum MDCT...... Multi-detector computed tomography Mha..... Middle hepatic artery MHV..... Middle hepatic vein MIP...... Maximum intensity projection MRCP Magnetic resonance cholangiopancreatography MRI Magnetic resonance imaging **NEX**...... Number of excitations **NPV.....** Negative predictive value NSF Nephrogenic systemic fibrosis **OLT** Orthotropic liver transplantation OP..... Out-of-phase PEIPercutaneous ethanol injection PI......Parallel imaging **PPV**......Positive predictive value RF......Radiofrequency. RFA Radiofrequency ablation Rha..... Right hepatic artery

List of Abbreviations Cont...

Abb.	Full term
RHV	Right hepatic vein
	Radiation therapy
	Respiratory-triggered
	Single-shot spin-echo
	Superior mesenteric artery
	Signal to noise ratios.
	Spectrally adiabatic inversion recovery
	. Superparamagnetic iron oxide particle
	Statistical package for the social sciences
	Single shot fast spin echo.
	. Short time inversion recovery sequences
	Trans-arterial chemo-embolization
TAE	Trans-arterial embolization
TARE	Trans arterial radio-embolization
TE	. Echo time
TR	Time of repetition
	. Tumor volume doubling time
wo	

List of Tables

Table No	o. Title	Page No.
Table (1):	Visual liver lesion characterizimaging.	
Table (2):	LI-RADS diagnostic catedral diagnostic categories (on the LR-1 and LR-2 entities (on the	left) and examples of
Table (3):	List of LI-RADS ancillary fear	tures 69
Table (4):	MRI protocol for post-assessment.	
Table (5):	Expected appearances after TA	ACE therapy114
Table (6):	Overview of response criteria	and categories119
Table (7):	LI-RADS treatment response of	categories124
Table (8):	The demographic data of 20 tr	eated observations 139
Table (9):	Minimum and maximum diammm	
Table (10):	Correlation between dynamic final diagnosis in the studied g	
Table (11):	Correlation between diffusion final diagnosis in the studied g	
Table (12):	Statistical analysis of ADC final diagnosis in the studied g	

List of Figures

Fig. No.	Title Po	ige No.
Figure (1):	T1 and T2 WIs appropriate of the live	r 7
•	T1 and T2 WIs appearance of the live	
Figure (2):	(a–g): Segmental liver anatomy in MF	
Figure (2):	(h and i): Hepatic veins and portal v in MRI	
Figure (2):	(j, k and l): hepatic arteries	12
Figure (3):	Microscopic appearance of Grov patterns of H.C.C	
Figure (4):	Microscopic appearance hepatocellular carcinoma variants	
Figure (5):	Schematic illustrates water molecumovement	
Figure (6):	Schematic illustrates the effect of a D imaging on water molecules	WI
Figure (7):	Signal intensity versus b values diffusion-weighted imaging (DWI) a ADC in different tissues	at and
Figure (8):	Example for T2 shine-through effect i	
	cyst	35
Figure (9):	Importance of a multichannel ar	v
	receiver coil	42
Figure (10):	T1 FS (VIBE) sequences	
Figure (11):	Typical liver MRI protocol	
Figure (12):	Non-rim and rim APHE	60
Figure (13):	LI-RADS diagnostic algorithm	62
Figure (14):	Washout appearance	63
Figure (15):	Capsule appearance of H.C.C	67
Figure (16):	Restricted diffusion in HCC	71
Figure (17):	Corona enhancement of HCC	74

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (18):	Difference of fat deposition in a more than the surrounding liver a sparing in a mass in a diffusely liver	nd fat fatty
Figure (19):	Mosaic architecture and nodu nodule appearance of HCC	le in
Figure (20):	Step 1 of the LI-RADS v2018	82
Figure (21):	Step 2 of the LI-RADS v2018	83
Figure (22):	Step 3 of the LI-RADS v2018	84
Figure (23):	Principle of conventional trans-ar	rterial
_	chemoembolization	86
Figure (24):	Arterioportal fistula (APF) post TA	CE94
Figure (25):	Bile duct injury post TACE	
Figure (26):	Post-TACE acute parence infarction	
Figure (27):	Post-TACE tumor rupture	
Figure (28):	CT scans of patterns of li accumulation after TACE	piodol
Figure (29):	MRI appearance of complete necre HCC focal lesion after TACE in T	
	T2 WIs	
Figure (30):	MRI appearance of residual HCC	
	lesion.	
Figure (31):	CT and MRI appearance of re HCC focal lesion	
Figure (32):	CT and MRI appearance of catheter arterial chemo-emboli (TACE)-induced arterioportal sportal vein obliteration and infarct	zation shunt,

List of Figures Cont...

Fig. No.	Title Page	e No.
Figure (33):	CT appearance of Hepatocellular carcinoma (HCC) treated with DEB	-
Figure (34):	Pre and Post-TACE MRI appearance of HCC focal lesion showing post treatment viability.	f t
Figure (35):	CT appearance of presence of gas as a findings specific to trans-catheter therapies.	a C
Figure (36):	Pre and post-TACE CT appearance of treated HCC focal lesion.	f
Figure (37):	LI-RADS treatment response algorithm with tie-breaking rules	
Figure (38):	Expected post-treatment thin enhancing rin	n121
Figure (39):	Pre and post-treatment CT appearance of Hepatocellular carcinoma (HCC) with tumor in vein	ı
Figure (40):	Measurements of viable tumor after treatment	c
Figure (41):	Pre and Post-TACE DWI with ADC histograms	
Figure (42):	Perilesional recurrence of HCC after chemoembolization	r
Figure (43):	Distribution of patients according to AFP level	
Figure (44):	Distribution of lesions into LR-TF viable, non-viable and non-evaluable	е
	groups	141

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (46):	Distribution of signal intensity TR non-viable conditions on T1	
Figure (47):	Distribution of signal intensity TR non-viable conditions on T2	
Figure (48):	Distribution of signal intensity TR viable lesions on T1 WIs	
Figure (49):	Distribution of signal intensity TR viable lesions on T2 WIs	
Figure (50):	Distribution of lesion border is benign and malignant condition	
Figure (51):	Diagnostic indices (sense specificity, PPV, NPV and agreement) of dynamic and di MRI in the studied group	overall ffusion
Figure (52):	Results of receiver operating for ADC values in distinguishi TR non-viable and LR-TR groups.	ng LR- viable
Figure (53-62):	Case 1	
Figure (63-68):	Case 2	161
Figure (69-74):	Case 3	168
Figure (75-85):	Case 4	175
Figure (86-92):	Case 5	187
Figure (93-97):	Case 6	194
Figure (98-106):	Case 7	201
Figure (107-111):	Case 8	212
Figure (112-116):	Case 9	218
Figure (117):	Follow-up post treatment alg suggested by LIRADS 2018 vers	

Role of dynamic contrast enhanced MRI and Diffusion Weighted Imaging in Prediction of Tumor Response to TACE in Unresectable H.C.C Patients

Ahmed Ibrahim Nassar 1 , Ahmed Mohamed Monib 2 , Mohamed Sobhy Hassan 3 , Ahmed Hassan Soliman 4

¹Radio-diagnosis specialist, El-Agouza police hospital, ²Professor of Radio-diagnosis, Faculty of Medicine / Ain-shams University, ³ Professor of Radio-diagnosis, Faculty of Medicine / Ain-shams University, ⁴ Assistant Professor of Radio-diagnosis, Faculty of Medicine / Ain-shams University.

Abstract

Background: To evaluate the role of MRI in the detection of recurrent or residual tumor viability in prediction of the response of the irresectable HCC patients who had locally treated with TACE by studying the enhancement (vascularity) pattern and the volume changes of the HCC after TACE. We were also aiming to improve the technique and to standardize MR protocol to be used after interventional therapy for malignant hepatic tumors.

Results: The study group consisted of 20 patients and the results were analyzed as 31 treated hepatic focal lesions. The patients underwent DCE MRI with DWI in one / three months duration following TACE procedure and were radiologically assessed to observe tumoral post treatment response for non-viable, viable post treatment response categories Statistical analysis showed that dynamic MRI had 100% level of sensitivity, specificity of 88.89 %, PPV of 91.67% and NPV of 100% with an overall agreement of 95%. While on the other hand, statistics showed that DWI has 81.82 % level of sensitivity, specificity of 88.9%, PPV of 90%, NPV of 80% with an overall agreement of 85%. The difference between non-viable and viable groups' ADC variables was found statistically significant at P value < 0.018 and best cut off value that augments sensitivity and specificity is 1.24. At this ADC value, showed 90.91% level of sensitivity, specificity of 87.5%, PPV of 90.9%, NPV of 87.50% with an overall agreement of 79.5%.

Conclusion: Dynamic contrast enhanced MRI is a powerful tool in detection of tumour viability and complications after TACE of hepatocellular carcinoma. Imaging protocol should include dynamic study combined with diffusion imaging with post processing of the images to obtain ADC measurements for better tissue characterization and should be performed at regular time intervals to enhance the diagnostic confidence of MRI for post treatment response viability detection.

Keywords: HCC–TACE– DCE MRI –DWI.

Introduction

Hepatocellular carcinoma (HCC) is the most common primary malignant disease of the liver and is the third leading cause of death from cancer worldwide (Bonekamp et al., 2013).

Only a minority of all patients with HCC are surgical candidates at the time of diagnosis (Wang et al., 2014).

Treatment options are divided into surgical therapies (i.e., resection, cryoablation and orthotropic liver transplantation (OLT), and nonsurgical therapies (i.e., percutaneous ethanol injection (PEI), radiofrequency ablation (RFA), trans-arterial chemo-embolization (TACE), radiation therapy (RT) systemic therapy) (Curley et al., 2017).

Transcatheter arterial chemoembolization (TACE) is one of the most commonly used intra-arterial therapies to treat unresectable HCC, and several clinical trials have demonstrated that TACE has the potential to show survival benefits in patients with HCC. TACE is a frequently used technique and usually includes intra-arterial delivery of emulsions mixed with chemotherapeutic agents and lipiodol, followed by the administration of the embolic agent (Wang et al., 2014).

Assessing early response to therapy using objective criteria is paramount for clinical care. Identifying early responders could help individualize therapy and tailor future treatment strategies (Bonekamp et al., 2013).