

بسم الله الرحمن الرحيم

00000

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

	ملاحظات:
	s and no see to be the control of the control
خامتهانی میندانی AIN SHAMS UNIVERSITY	
since 1992	<i>f</i>

تربيحات وتكنوبوجبارها

AN INTEGRATED FRAMEWORK FOR INVESTIGATING EXTREME RAINFALL EVENTS OVER THE EASTERN MEDITERRANEAN REGION: FOCUSING ON EGYPT AND CYPRUS

By

Doaa Mohamed Fathy Abo El-Yazeed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Irrigation and Hydraulics Engineering

AN INTEGRATED FRAMEWORK FOR INVESTIGATING EXTREME RAINFALL EVENTS OVER THE EASTERN MEDITERRANEAN REGION: FOCUSING ON EGYPT AND CYPRUS

By **Doaa Mohamed Fathy Abo El-Yazeed**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in

Irrigation and Hydraulics Engineering

Under the Supervision of

Prof. Ahmad Wagdy Abdeldayem	Prof. Johannes Lelieveld
Professor of Hydrology	Professor of Atmospheric Physics
Irrigation and Hydraulics Department	Director of Max Plank Institute for
Faculty of Engineering, Cairo University	Chemistry, Mainz, Germany

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

AN INTEGRATED FRAMEWORK FOR INVESTIGATING EXTREME RAINFALL EVENTS OVER THE EASTERN MEDITERRANEAN REGION: FOCUSING ON EGYPT AND CYPRUS

By **Doaa Mohamed Fathy Abo El-Yazeed**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Irrigation and Hydraulics Engineering

Approved by the Examining Committee:

Prof. Ahmad Wagdy Abdeldayem, Thesis Main Advisor Professor of Hydrology Faculty of Engineering, Cairo University

Prof. Khaled Hussein Hamed, Internal Examiner Professor of Hydraulics Faculty of Engineering, Cairo University

Prof. Karima Mahmoud Attia, External Examiner Professor National Water Research Center

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

Engineer's Name: Doaa Mohamed Fathy Abo El-Yazeed

Date of Birth: 16/02/1996 **Nationality:** Egyptian

E-mail: doaa.fathi@eng.cu.edu.eg

Phone: 01 022 067 373

Address: Nasr City, Cairo, Egypt

Registration Date: 01/10/2018 **Awarding Date:**/..../2021 **Degree:** Master of Science

Department: Irrigation and Hydraulics Engineering

Supervisors:

Prof. Dr. Ahmad Wagdy Abdeldayem

Prof. Dr. Johannes Lelieveld

Examiners:

Prof. Dr. Ahmad Wagdy Abdeldayem (Thesis Main advisor)

Prof. Dr. Khaled Hussein Hamed (Internal examiner)
Prof. Dr. Karima Mahmoud Attia (External examiner)

National Water Research Center

Title of Thesis:

An Integrated Framework for Investigating Extreme Rainfall Events over the Eastern Mediterranean Region: Focusing on Egypt and Cyprus

Key Words:

Extreme rainfall events; eastern Mediterranean; trend analysis; WRF model; synoptic conditions.

Summary:

Extreme rainfall events are one of the devastating natural hazards that have a great impact on different facets of life. This study is initiated to shed light on extreme rainfall events over the eastern Mediterranean region, especially over both Egypt and Cyprus. Investigating research into such events can help mitigate their risks and increase society resilience. An integrated framework is then suggested through this study to analyze those events from different aspects. First, the evolution of extreme rainfall events over the study area during the last few decades is inspected using trend analysis tests such as Mann Kendal trend test and Cox-Stuart test. Second, two heavy rainfall events that affected both Egypt and Cyprus in October 2019 and March 2020 are chosen as case studies, where the anomaly of the rainfall amounts above normal conditions is reviewed during both events. Third, the Weather Research and Forecasting (WRF) model is used as a numerical weather prediction model to reproduce both targeted events. The best combination of parameterization schemes is utilized for revisiting the synoptic conditions accompanying both events and is further validated with a third severe event to examine the potentiality to use the model in future forecasts.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Doaa Mohamed Fathy Abo El-Yazeed	Date: / /
a·	
Signature:	

Acknowledgments

First of all, I have to thank ALLAH for His constant guidance in everything in my life. Without His support, this research could not have reached its goal.

I would like to express my deepest appreciation and sincere gratitude to my supervisors, **Prof. Ahmad Wagdy**, **Prof. Johannes Lelieveld** for their guidance, persistent support, and encouragement during the whole period of the research.

I would like to thank **Prof. Dr. Ahmad Wagdy** for his valuable guidance. Without his deep knowledge and experience, the research goal couldn't have been achieved.

I would like to thank **Prof. Johannes Lelieveld** for his great help, support and guidance. In addition to the members of the climate research team at Cyprus Institute (Prof. Silas Michaelides, Prof. Filippos Tymvios, Dr. George Zittis), and Dr. Andries De Vries for providing great research advice in different stages.

My thanks also go to the Cytera high performance computer team for offering the computing water resources and the technical support required during the whole research.

I scenically and specially would like to express my thanks to Dr. Mohamed Sherif for his time, patience, continuous support, and guidance. I would like to thank him for his valuable input to this work and the great amount of time and effort he dedicated

Very special thanks are due to **Prof. Mohamed Rami** and **Dr. Hatem Menoufy** (National Water Research Centre NWRC: Environmental and Climate Research Institute) who helped me a lot in organizing my thinking, and didn't hesitate to answer my questions

I also acknowledge with a deep sense of reverence, my gratitude towards my parents and my family who has always supported me morally and scientifically during my whole life.

Last but not the least, to those not mentioned who supplied something by way of encouragement, discussion, and interest, I offer my sincere thanks.

Table of Contents

DISCLAIME	R	I
ACKNOWLE	DGMENTS	II
TABLE OF C	ONTENTS	III
	BLES	
	URES	
NOMENCLA	TURE	IX
ABSTRACT.		XII
CHAPTER 1	: INTRODUCTION	1
1.1.	GENERAL BACKGROUND	1
1.2.	PROBLEM STATEMENT	
1.3.	RESEARCH OBJECTIVES	
1.4.	THESIS OUTLINES	
	: LITERATURE REVIEW	
2.1.	Introduction	
2.2.	RELATED WORK	
2.2.1.	Impacts of Extreme Rainfall Events	
2.2.2.	WRF Model in Simulation of Extreme Rainfall Events	
2.2.2.1. 2.2.2.2.	Numerical Weather Prediction Models	
2.2.2.3.	Previous Studies	
CHAPTER 3	: METHODOLOGY	24
3.1.	DESCRIPTION OF STUDY AREA	
3.1.1.	Egypt	
3.1.1.	Topography	
3.1.1.2.	Geology and Hydrology	
3.1.1.3.	Climate	
3.1.2.	Cyprus	36
3.1.2.1.	Topography	37
3.1.2.2.	Geology and Hydrology	
3.1.2.3.	Climate	
3.2.	DATA COLLECTION AND MODELLING	
3.2.1.	Rainfall Data Collection and Evaluation	
3.2.2.	Trend Analysis Tests (Mann-Kendall and Cox-Stuart Tests)	46
3.2.3.	Standardized Precipitation Index	51
3.2.4.	WRF Modelling	53
3.2.4.1.	External Data	
3.2.4.2.	Model Evaluation	
3.2.4.3.	Model Validation	
3 3	CASE STUDY	61

3.3.1.	October 2019	61
3.3.2.	March 2020	65
CHAPTER 4 :	RESULTS	68
4.1.	DATA COLLECTION AND EVALUATION RESULTS	68
4.2.	TREND ANALYSIS TESTS RESULTS	70
4.2.1.	Results of Mann-Kendall Test	70
4.2.2.	Results of Cox-Stuart Test	73
4.3.	STANDARDIZED PRECIPITATION INDEX RESULTS	75
4.4.	WRF MODEL RESULTS	78
4.4.1.	Results of Different Physics Parameterizations	78
4.4.2.	Synoptic Conditions	
4.4.2.1.	October 2019	93
4.4.2.1.	March 2020	
4.4.3.	Model Validation Results	98
4.5.	DEDUCTIONS AND DISCUSSION:	100
CHAPTER 5 :	CONCLUSION AND RECOMMENDATIONS	102
5.1.	SUMMARY	102
5.2.	Conclusions:	103
5.3.	RECOMMENDATIONS	103
REFERENCE	'S	105

List of Tables

Table 2 WRF longwave radiation parameterization schemes	Table 1 WRF microphysics parameterization schemes	12
Table 4 WRF planetary boundary layer parameterization schemes	Table 2 WRF longwave radiation parameterization schemes	13
Table 5 WRF cumulus parameterization schemes	Table 3 WRF shortwave radiation parameterization schemes	13
Table 5 WRF cumulus parameterization schemes	Table 4 WRF planetary boundary layer parameterization schemes	15
Table 7 List of heavy rainfall events in Cyprus last decade	Table 5 WRF cumulus parameterization schemes	15
Table 7 List of heavy rainfall events in Cyprus last decade	Table 6 List of heavy rainfall events in Egypt last decade	35
Table 9 Locations of ground observation stations in Egypt after NWRC		
Table 9 Locations of ground observation stations in Egypt after NWRC	Table 8 Description of used gridded observational datasets of precipitation	45
Table 11 WRF model configuration		
Table 11 WRF model configuration	Table 10 SPI values interpretation	52
Table 13 Summary for all statistics reflecting rainfall occurrence and rainfall amount required to assess WRF model performance		
Table 13 Summary for all statistics reflecting rainfall occurrence and rainfall amount required to assess WRF model performance	Table 12 Contingency table for evaluation of WRF model with respect to rainfall	
required to assess WRF model performance		56
required to assess WRF model performance	Table 13 Summary for all statistics reflecting rainfall occurrence and rainfall amount	t
Table 15 Statistics summary for the AMD, results of Mann-Kendall trend test and Sen's slope estimator using CPC data over the six climatic zones in Egypt		
slope estimator using CPC data over the six climatic zones in Egypt	Table 14 Values of r and MNSE for the five gridded datasets	69
Table 16 Statistics summary for the AMD, results of Mann-Kendall trend test and Sen's slope estimator using ERA5 data over the six climatic zones in Egypt	Table 15 Statistics summary for the AMD, results of Mann-Kendall trend test and Se	en's
slope estimator using ERA5 data over the six climatic zones in Egypt	slope estimator using CPC data over the six climatic zones in Egypt	72
Table 17 Statistics summary for the AMD, results of Mann-Kendall trend test and Sen's slope estimator using NASA Power data over the six climatic zones in Egypt	Table 16 Statistics summary for the AMD, results of Mann-Kendall trend test and Se	en's
slope estimator using NASA Power data over the six climatic zones in Egypt	slope estimator using ERA5 data over the six climatic zones in Egypt	72
Table 18 Results of Cox-Stuart test for trend detection using CPC - ERA5 - NASA data over the six climatic zones in Egypt	Table 17 Statistics summary for the AMD, results of Mann-Kendall trend test and Se	en's
over the six climatic zones in Egypt	slope estimator using NASA Power data over the six climatic zones in Egypt	72
Table 19 Annual range of rainy days during March (1981 - 2018) and October (1981 - 2018) Vs. March 2020 and October 2019 at Cairo station using CPC - ERA5 - NASA	Table 18 Results of Cox-Stuart test for trend detection using CPC - ERA5 - NASA d	lata
2018) Vs. March 2020 and October 2019 at Cairo station using CPC - ERA5 - NASA Table 20 Annual range of rainy days during March (1981 - 2018) and October (1981 - 2018) Vs. March 2020 and October 2019 at Cairo station using CPC - ERA5 - NASA Table 21 WRF Combinations of different parameterization schemes (7 Microphysical and 3 Cumulus)	over the six climatic zones in Egypt	73
Table 20 Annual range of rainy days during March (1981 - 2018) and October (1981 - 2018) Vs. March 2020 and October 2019 at Cairo station using CPC - ERA5 - NASA	Table 19 Annual range of rainy days during March (1981 - 2018) and October (1981	_
Table 20 Annual range of rainy days during March (1981 - 2018) and October (1981 - 2018) Vs. March 2020 and October 2019 at Cairo station using CPC - ERA5 - NASA	2018) Vs. March 2020 and October 2019 at Cairo station using CPC - ERA5 - NASA	4
2018) Vs. March 2020 and October 2019 at Cairo station using CPC - ERA5 - NASA Table 21 WRF Combinations of different parameterization schemes (7 Microphysical and 3 Cumulus)		76
Table 21 WRF Combinations of different parameterization schemes (7 Microphysical and 3 Cumulus)	Table 20 Annual range of rainy days during March (1981 - 2018) and October (1981	_
Table 21 WRF Combinations of different parameterization schemes (7 Microphysical and 3 Cumulus)	2018) Vs. March 2020 and October 2019 at Cairo station using CPC - ERA5 - NASA	4
and 3 Cumulus)		77
Table 22 WRF Model evaluation with respect to rainfall occurrence (POD, TS, FAR,	Table 21 WRF Combinations of different parameterization schemes (7 Microphysica	al
•		
PC) and Rainfall amount (MNSE, MIA) for the 21 combinations during March 2020.87	Table 22 WRF Model evaluation with respect to rainfall occurrence (POD, TS, FAR,	.,
	PC) and Rainfall amount (MNSE, MIA) for the 21 combinations during March 2020	.87

List of Figures

Figure 1 Stages of running the WRF Model	10
Figure 2 Interaction between WRF parametrizations	
Figure 3 The eastern Mediterranean region	
Figure 4 Annual rainfall distribution in the eastern Mediterranean after NWRC (1981	
2019)	
Figure 5 Synoptic conditions over eastern Mediterranean region	28
Figure 6 Egypt geographical map after NWRC	
Figure 7 Egypt topographic map using SRTM data	
Figure 8 Main geologic regions in Egypt	
Figure 9 Main hydrological regions in Egypt	
Figure 10 Annual rainfall distribution in Egypt after NWRC (1981 – 2019)	33
Figure 11 Monthly temperature and precipitation in Cairo after WMO database	
Figure 12 Monthly temperature and precipitation in Alexandria after WMO database.	34
Figure 13 Cyprus geographical map (created by the author)	36
Figure 14 Cyprus topographic map using SRTM	.37
Figure 15 Cyprus river map (created by the author)	38
Figure 16 Annual rainfall distribution in Cyprus after NWRC (1981 – 2019)	39
Figure 17 Monthly temperature and precipitation in Paphos after WMO database	40
Figure 18 Monthly temperature and precipitation in Nicosia after WMO database	40
Figure 19 Stations with available ground observation rainfall data during October 201	
and March 2020 in Egypt	
Figure 20 Stations with available ground observation rainfall data during October 201	
JF	.44
Figure 21 Ground observation stations locations and climatic zones in Egypt after	
NWRC	
Figure 22 SPI computation flowchart	
Figure 23 Impacts of November 2015 event on Alexandria	
Figure 24 Methodology of modelling heavy rainfall events using WRF model	.59
Figure 25 WRF model domains used. (a) domain 1 [25 km] covering the EM, (b)	
domain 2 [5 km] focusing on Egypt and Cyprus, (c) domain 3 [1 km] focusing on	
Cyprus only for October 2019 event	
Figure 26 Impacts of October 2019 event on Cyprus	
Figure 27 (a-g) Impacts of October 2019 event on Cairo governorate in Egypt	
Figure 28 Impacts of October 2019 event on Alexandria governorate in Egypt	
Figure 29 (a-e) Impacts of March 2020 event on Egypt	
Figure 30 Timeseries of rainfall over Dabaa station from observed and gridded datase	
during October 2019 (a) and March 2020 (b)	
Figure 31 Values of r and MNSE for the five gridded datasets	
Figure 32 (a-f) The variability of AMD using (CPC - ERA5 - NASA Power) data from 1981 – 2020. (a) Mediterranean zone, (b) Nile Delta Zone, (c) Middle Egypt zone, (d)	
	-
Upper Egypt zone, (e) Sinai Zone, and (f) Red Sea zone	
the six climatic zones in Egypt using CPC data	
Figure 34 Results of Cox-Stuart test S1 * statistic relative to 5% significance level ov	
the six climatic zones in Egypt using ERA5 data	

Figure 35 Results of Cox-Stuart test S1 * statistic relative to 5% significance level over
the six climatic zones in Egypt using NASA data74
Figure 36 SPI-1month values for March (1981 - 2020) at Cairo station using (CPC -
ERA5 - NASA Power) data76
Figure 37 SPI-1month values for October (1981 - 2020) at Cairo station using (CPC -
ERA5 - NASA Power) data76
Figure 38 SPI-1month values for March (1981 - 2020) at Borg Al-Arab station in
Alexandria using (CPC - ERA5 - NASA Power) data77
Figure 39 SPI-1month values for October (1981 - 2020) at Borg Al-Arab station in
Alexandria using (CPC - ERA5 - NASA Power) data77
Figure 40 Spatial plots showing WRF simulated rainfall (October 2019) obtained over
Cyprus (extracted from domain 3). Arrows on left indicate different CU schemes (KF,
BMJ,GF). Arrows on the top indicate different MP schemes (Lin, WSM6, Thompson)
81
Figure 41 Spatial plots showing WRF simulated rainfall (October 2019) obtained over
Egypt (extracted from domain 2). Arrows on left indicate different CU schemes (KF,
BMJ,GF). Arrows on the top indicate different MP schemes (Lin, WSM6, Thompson)
82
Figure 42 Spatial plots showing WRF simulated rainfall (March 2020) obtained over
Egypt (extracted from domain 2). Arrows on left indicate different CU schemes (KF,
BMJ,GF). Arrows on the top indicate different MP schemes (Lin, WSM6, Thompson)
83
Figure 43 Variability of observed and simulated rainfall amounts by WRF (21
combinations) for different topographic categories (>1000 m, 600-1000 m, 200-600 m,
<200 m)84
Figure 44 Boxplot showing the variation between observed rainfall Vs. WRF simulated
rainfall (21 combinations) Over Cyprus during October 201985
Figure 45 Boxplot showing the variation between observed rainfall Vs. WRF simulated
rainfall (21 combinations) Over Egypt during October 201985
Figure 46 Boxplot showing the variation between observed rainfall Vs. WRF simulated
rainfall (21 combinations) Over Egypt during March 202086
Figure 47 Maximum five day precipitation (RX5D) error by the 21 WRF combinations
during October 2019 and March 202086
Figure 48 Probability of Detection (POD) of rainfall occurrence by WRF during
October 2019 and March 202091
Figure 49 Modified Index of Agreement (MIA) between observed and WRF simulated
rainfall amounts during October 2019 and March 202091
Figure 50 Combined Score for all WRF combinations during October 2019 and March
2020 plus the mean value92
Figure 51 Daily Mean Sea level Pressure (MSLP) and Geopotential Height (500 hpa)
charts simulated by WRF during October 2019 event. (a-d) MSLP on 21st – 24th
October 2019. (e-h) geopotential height on 21st – 24th October 201994
Figure 52 Daily Mean Sea level Pressure (MSLP) and Geopotential Height (500 hpa)
charts simulated by WRF during October 2019 event. (a-d) MSLP on 25th – 28th
October 2019. (e-h) geopotential height on 25th – 28th October 201995
Figure 53 Daily Mean Sea level Pressure (MSLP) and Geopotential Height (500 hpa)
charts simulated by WRF during March 2020 event. (a-b) MSLP on 11th - 12th March
2020. (c-d) geopotential height on 11th - 12th March 202096

Figure 54 Daily Mean Sea level Pressure (MSLP) and Geopotential Height (500 hpa	ı)
charts simulated by WRF during March 2020 event. (a-b) MSLP on 13th - 14th Mar	ch
2020. (c-d) geopotential height on 13th - 14th March 2020	97
Figure 55 SPI-1month values for November (1981 - 2020) at Borg Al-Arab station i	n
Alexandria using (CPC - ERA5 - NASA Power) data	98
Figure 56 Spatial plot showing WRF simulated rainfall (November 2015) obtained of	over
Egypt (extracted from domain2)	99
Figure 57 Observed Vs. simulated rainfall amounts using WRF combination 2M3C	
during November 2015 in some stations in Egypt	99

Nomenclature

ACM2 Asymmetric Convection Model 2 Scheme

AFWA Air Force Weather Agency
AMD Annual Maximum Daily
ARSTs Active Red Sea Troughs
ARW Advanced Weather Research
BMJ Betts-Miller-Janiic Scheme

CAPE Convective Available Potential Energy

CCI Commission for Climatology
COR Correlation Coefficient
CPC Climate Prediction Center

ECMWF European Centre for Medium Range Weather Forecast

EMA Egyptian Meteorological Authority
EMME Eastern Mediterranean and Middle East

EMR Eastern Mediterranean Region

ERA ECMWF Re-analysis Fifth Generation Dataset

ESRL Earth System Research Laboratory

ETCCDI Expert Team on Climate Change Detection and Indices

FAA Federal Aviation Administration

FAR False Alarm Ratio
FNL Final Re-analysis Data
GCM General Circulation Model
GF Grell-Freitas Scheme
GFS Global Forecasting System

GMAO Goddard's Global Modeling and Assimilation Office GOES Geostationary Operational Environmental Satellite

GPCP Global Precipitation Climatology Project

HAD High Aswan Dam

HPC High Performance Computer

IGBP International Geosphere-Biosphere ProgrammeIOC Intergovernmental Oceanographic CommissionIPCC Intergovernmental Panel on Climate Change

ITCZ Inter Tropical Convergence Zone

JCOMM Joint WMO-IOC Technical Commission for Oceanography and

Marine Meteorology

KF Kain-Fritsch Scheme LSM Land Surface Model MAE Mean Absolute Error

MB Mean Bias

ME Middle Egypt Zone
MED Mediterranean Zone

MedCLIVAR Mediterranean Climate Variability and Predictability

MERRA Modern Era Retrospective-Analysis for Research and Applications

MIA Modified Index of Agreement

MK Mann-Kendall Trend Test

MM5 Fifth Generation NCAR/Penn State Mesoscale Model

MNSE Modified Nash Sutcliff- Efficiency

MODIS Moderate Resolution Imaging Spectroradiometer

MSLP Mean Sea Level Pressure MYJ Mellor-Yamada-Janjic Scheme

MYNN Mellor-Yamada Nakanishi and Niino Scheme

NAM North American Mesoscale Model

NCAR National Center for Atmospheric Research NCEP National Center for Environmental Prediction

NCL NCAR Command Language

NDE Nile Delta Zone

NMM Non-hydrostatic Mesoscale Model

NOAA National Oceanic Atmospheric Administration

NWP Numerical Weather Prediction ModelNWRC National Water Research CenterPBL Planetary Boundary Layer

PC Proportion Correct

PERSIANN- Precipitation Estimation from Remotely Sensed Information using

CDR Artificial Neural Networks – Climate Data Record

PNNL Pacific Northwest National Laboratory

POD Probability of Detection

QNSE Quasi-Normal Scale Elimination Scheme

Qv Water Vapor Mixing Ratio RCM Regional Climate Model

RD Red Sea Zone RFE Rainfall Estimate

RMSE Root Mean Square Error

RRTM Rapid Radiative Transfer Model

RSTs Red Sea Troughs SA Saudi Arabia

SENHAMI Peruvian Meteorological and Hydrological Service

SN Sinai Zone

SPI Standardized Precipitation Index
SRTM Shuttle Radar Topography Mission

STM Sign Test Method

TAMSAT Tropical Applications of Meteorology using SATellite Data

TMPA Multi Satellite Precipitation Analysis
TRMM Tropical Rainfall Measuring Mission

TS Threat Score

UE Upper Egypt Zone
UGB Upper Ganga Basin
ULTs Upper Level Troughs

UN United Nations

WCDMP World Climate Data and Monitoring Programme

WCRP World Climate Research Programme
WDM6 WRF Double-Moment 6-class scheme