Salwa Akl

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

-Call +600-2

Salwa Akl

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Salwa Akl

بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

B18480

EVALUATION OF α - GLUTATHIONE S TRANSFERASE AS A MARKER OF HEPATOCELLULAR DAMAGE IN PATIENTS WITH CHRONIC HEPATITIS C

Thesis
SUBMITTED FOR PARTIAL FULFILLMENT OF MASTER
DEGREE IN CLINICAL AND CHEMICAL PATHOLOGY

BY

BASEM BASIONY AZAB M.B.B.CH

SUPERVISORS

Professor Dr.
SAMIA HASSAN KANDEEL
Professor of Clinical Pathology
Faculty of medicine
Menoutia University

Professor Dr.
AHMED ABBAS RAOUF
Dean of the liver institute
Chairman of Biochemistry Dept.
Faculty of medicine
Menoufia University

Professor Dr. EMAD FAHIM ABD ELHALIM
Assistant Professor of clinical pathology
Faculty of medicine
Menoutia University

Faculty of medicine Menoufia University 1999*

CONTENTS

 Acknowledgment 	pagc I
• List of Abbreviations	
• List of Figures	
• List of Tables	V
• Introduction	1
Aim of the Work	3
Review of Literature	4
#Viral Hepatitis	4
Hepatitis A	6
Hepatitis B	7
Hepatitis D	7
Hepatitis E	8
Hepatitis G	8
# Hepatitis C	10
#Clinical Types of Hepatitis	15
#Laboratory Diagnosis of Hepatitis	22
#Glutathione S Transferases	34
Subjects and Methods	55
• Results	79
• Discussion	95
Conclusion and Recommendation	
• References	
- Archio Summary	111

Ц

LIST OF ABBREVIATIONS

ALT Alanine aminotransferase

ALB Albumin

AST Aspartate aminotransferase

ALP Alkaline phosphatase

CATI Chronic active hepatitis

bDNA Branched deoxy ribonucleic acid

cDNA Complementary deoxy ribonucleic acid

CMV Cytomegalovirus

CPH Chronic persistent hepatitis

Dbil Direct bilirubin

DCNB 3,4-dichloro-nitrobenzene

DEAE Diethyl amino ethyl

dL Deciliter

DNA Deoxy ribonucleic acid

EBV Ebestein Barr virus

EIA Enzyme inmunoassay

FIB Fibrosis

g Gram

, GG f γ Glutamyltransferase

GST Glutathione S transferase

HAV Hepatitis A virus

HBV Hepatitis B virus

HBsAg Hepatitis B surface antigen

HBcAg Hepatitis B core antigen

HCV Hepatitis C virus

HGV Hepatitis G virus

HIV Human immunodeficiency virus

(gG Immunoglobulin G

IgM [mmunoglobulin M

[1] International unit

Kd Kilo dalton

LN Lobular necrosis

Mg Milligram

m.w. Molecular weight

NANBII Non-A Non-B hepatitis

ORF Open reading frame

PCR Polymerase chain reaction

PN Piccemeal necrosis

PI Portal inflammation

RNA Ribonucleic acid

RIA Radioimmunoassay

RIBA Recombinant immunoblot assay

RT-PCR Reverse transcription polymerase chain reaction

SH Sulfhydryl

SOD Superoxide dismutase

T-F Total score without fibrosis

TS Total score

11

TP Total protein

Tbil Total bilirubin

List Of Figures

		page
Fig 1	Structure of Hepatitis B virus	13
Fig 2	Structure of Hepatitis D virus	13
Fig 3	Structure of Hepatitis C virus	14
Fig A	Mean for patients, controls and t-test for GST, ALT, and AST.	83
Fig B	Mean for patients, controls and t-test for GGT, ALP, and ALB.	84
Fig C	Mean for patients, controls and t-test for TP, T Bil, and D Bil.	85
Fig D	ROC curve for GST	8 9
Fig E	ROC curve for ALT	90
Fig F	ROC curve for AST	91
Fig G	ROC curve for GST, ALT, AST	92

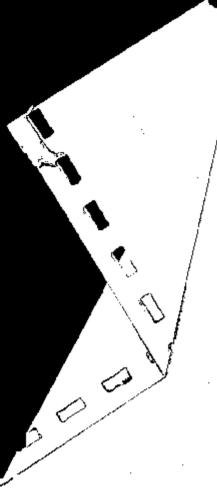
List Of Tables

- Table A Sequence homology between GST to define gene families.
- Table B Physical and Catalytic properties of GST subunits.
- Table 1 Statistical comparison of different studied parameters for HCV patients and control group.
- Table 2 Correlation (p Spearman) between biochemical data and components of Knodell score.
- Table 3 Correlation (p Spearman) between GST and other liver parameters.
- Table 4 ANOVA for GST, ALT, AST between patients groups and healthy controls.
- Table 5 Study of sensitivity, specificity and diagnostic efficacy of GST at different cut off levels
- Table 6 Raw Data of All tested parameters for patients group
- Table 7 Raw Data of All tested parameters for control group

<u>ACKNOWLEDGEMENT</u>

I would like to express my gratitude, deep appreciation, and gratefulness to the supervisors of this work.

Prof. Dr. Samia Hassan Kandil, Professor of clinical pathology, faculty of medicine, menoufiya university for her Advice, encouragement and sincere help and supervision.


Prof. Dr. Ahmed Abbas Raouf, Dean of the liver institute and Chairman of the biochemistry department faculty of medicine, menoufly university for his strong support, continuous help and supervision.

Ass. *Prof. Dr Imad Fahim Abdelhalim, Ass.* Professor of clinical pathology, faculty of medicine, menoufiya university for his guidance, advice and help.

Lastly I would like to express my appreciation to Ass.

Professor Dr. Mohamad Tawfik Badr, Ass. Professor of pathology department, liver institute, menouflya university for his help and advice.

Thanks to all my colleagues for encouragement.

MTRODUCTION

 \mathbb{G}

INTRODUCTION

Hepatitis C is a form of slowly progressive, silent and often asymptomatic hepatocellular damage. Transaminases are useful markers for measuring such damage in most cases, but not in mild cases as their activities lag behind changes in hepatocellular integrity because of their relatively long half life. {Lau et al 1993}

Moreover transaminases are located in periportal hepatocytes so their activities do not increase in mild liver damage. Thus was the need to get a better and more accurate marker than transaminases, also due to the wide fluctuation of their activity and the presence of significant histological changes in patients with normal concentration of transaminases. { Tiainen etail 1994}

Glutathione S-transferases (GST, EC 2.5.1.18) are a family of enzymes that catalyze the conjugation of glutathione with toxic hydrophobic molecules . α glutathione S-transferase (α GST) the basic human class of the enzyme also referred to as ligandin has a molecular weight of 50 KD, short half life of < 90 min. and present in high concentration in the cytosol of both periportal and centrilobular hepatocytes. {Hiley et al 1988}

 α Glutathione: S-transferase is uniformly distributed in hepatic tissue , thus elevated in both centrilobular and periportal liver damage , while ALT is elevated mainly with periportal damage. In addition α glutathione S-transferase has a shorter half life, low M.W, and high cytosolic concentration, so it is rapidly detected following hepatocellular

damage. Due to these properties a glutathione S-transferaselt will provide more accurate and early measure of hepatocellular damage. {Nelson et al 1995}

An enzyme immunoassay has been recently developed, and α GST has been proposed as a better and more sensitive index of hepatocellular injury than transaminases. { Ray et al 1995}

The importance of α GST was proved in several clinical settings such as halothane hepatotoxicity, birth asphyxia, autoimmune chronic hepatitis and paracetamol poisoning. Further more it was reported that α GST in combination with ALT may improve the biochemical assessment of hepatocellular damage in chronic hepatitis C patients.

{ Vauhourdolle et al 1995 }

AM OF THE WORK

AIM OF THE WORK

The aim of our study is to evaluate Alpha glutathione S-transerase (α -GST) as a marker of hepatocellular damage in chronic hepatitis C patients and compare it to the healthy-control-group to assess-the clinical importance of α -GST in monitoring the disease activity in these patients.

other Liver Function tests namely
ALT8AST