

# بسم الله الرحمن الرحيم

00000

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

|                                                                                                                | ملاحظات:                          |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------|
|                                                                                                                | s and on the bodies bodies bodies |
| المتعانية المعانية ا |                                   |
| since 1992                                                                                                     |                                   |

تربيحات وتكنوبوجبارها



# ROLE OF DYNAMIC MAGNETIC RESONANCE IMAGING IN DIFFERENTIATING BENIGN FROM MALIGNANT THYROID NODULE

#### Thesis

Submitted for partial fulfillment of MD degree of internal medicine

Presented by

### Sarah Mahmoud Wael Salah El Din

M.B.B.Ch, Master of internal medicine

Supervised by

### **Prof. Dr. Mohamed Saad Hamed**

Professor of internal medicine and endocrinology Faculty of Medicine, Ain Shams University

### Prof. Dr. Mona Mohamed Abd El Salam

Professor of internal medicine and endocrinology Faculty of Medicine, Ain Shams University

### Ass. Prof/ Nesma Ali Ibrahim

Assistant professor of internal medicine and endocrinology Faculty of Medicine, Ain Shams University

### Dr. Bassem Mourad Moustafa

Lecturer of internal medicine and endocrinology Faculty of Medicine, Ain Shams University

### **Dr. Caroline Adel Gerges**

Lecturer of internal medicine and endocrinology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021



# دور التصوير بالرنين المغناطيسي الديناميكي في التفريق بين العقيدات الدرقية الحميدة والخبيثة

رسالة

توطئة للحصول على درجة الدكتوراه في الباطنة العامة مقدمة من

الطبيبة/ سارة محمود وائل صلاح الدين

بكالوريوس الطب والجراحة، ماجستير الباطنة العامة-جامعة عين شمس

تحت إشراف

أ.د/ محمد سعد حامد

أستاذ الباطنة العامة والغدد الصماء

كلية الطب- جامعة عين شمس

أ.د/منى محمد عبد السلام

أستاذ الباطنة العامة والغدد الصماء

كلية الطب- جامعة عين شمس

د/ نسمة علي ابراهيم

أستاذ مساعد الباطنة العامة والغدد الصماء

كلية الطب- جامعة عين شمس

د/ باسم مراد مصطفی

مدرس الباطنة العامة والغدد الصماء

كلية الطب- جامعة عين شمس

د/ کارولین عادل جرجس

مدرس الباطنة العامة والغدد الصماء

كلية الطب- جامعة عين شمس

كلية الطب

جامعة عين شمس

7.71



سورة البقرة الآية: ٣٢



First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to my professors. Dr. Mohamed Saad Hamed for his continues help and Gide, Prof. Dr. Mona Mohamed Abd El SalamAss, Prof/ Nesma Ali Ibrahim, Dr. Bassem Mourad Moustafa and Dr Caroline Adel Gerges for there continues advice Gide support and encouragement through my thesis journey

I would like to thanks all my professors and colleges in radiology and General surgery department for there cooperation and help

Last but not least, I want to thank my mum, my dad, my husband, my beautiful daughters and all my family for their valuable love, help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

### **CONTENTS**

| Ti | tle             |                                                                                                                                    | Page |
|----|-----------------|------------------------------------------------------------------------------------------------------------------------------------|------|
| •  | List of Abbre   | eviations                                                                                                                          | I    |
| •  | List of Table   | · · · · · · · · · · · · · · · · · · ·                                                                                              | III  |
| •  | List of Figur   | es                                                                                                                                 | V    |
| •  | Introduction    | 1                                                                                                                                  | 1    |
| •  | Aim of the w    | ork                                                                                                                                | 4    |
| •  | Review of lit   | terature                                                                                                                           |      |
|    | Chapter (1):    | Thyroid Gland Overview                                                                                                             | 5    |
|    | Chapter (2):    | Thyroid nodules                                                                                                                    | 33   |
|    | Chapter (3):    | Thyroid cancer                                                                                                                     | 55   |
|    | Chapter (4):    | Diffuse weighted MRI image and ADC ratio in differentiation between benign and malignant in different tumors and in thyroid nodule | 76   |
| •  | Patients and    | l methods                                                                                                                          | 92   |
| •  | Results         | ••••••                                                                                                                             | 105  |
| •  | Discussion      | ••••••                                                                                                                             | 128  |
| •  | Conclusions     | and Recommendations                                                                                                                | 139  |
| •  | Summary         | •••••                                                                                                                              | 140  |
| •  | References.     | ••••••                                                                                                                             | 144  |
| •  | . الملخص العربي | ••••••                                                                                                                             |      |

### **LIST OF ABBREVIATIONS**

Abb. : Full term

ACR : American College of Radiology'sADC : Apparent Diffusion Coefficient

**APC** : Annual percent change

**ATA** : American Thyroid Association

**AUS**: Atypia of Undetermined Significance/

**BMI** : Body mass index

**CRT** : Neoadjuvant treatment and definitive concomitant

**CT** : Computed tomography

Type I iodothyronine deiodinase
Type II iodothyronine deiodinase
Type III iodothyronine deiodinase

**DIT**: Diiodotyrosine

DWI : Diffusion-weighted MR imagingEES : Extravascular extracellular space

**ELISA**: Enzyme-Linked Immunosorbent Assay

**EPI**: Echo planar imaging

**FLUS**: Follicular Lesion of Undetermined Significance

**FN**: Follicular Neoplasm

FNAB : Fine-needle aspiration biopsy
 FSH : Follicle stimulating hormone
 GEC : Gene expression classifier

**GH** : Growth hormone

H&E : Haematoxylin and eosinHNC : Head and neck carcinoma

**IMRT**: Intensity-modulated radiation therapy

**IS** : Intracellular space

K-TIRADS: The Korean Society for Thyroid Radiology

LRMITMonoiodotyrosineMNGMultinodular goiter

**MRI** : Magnetic resonance imaging

NIFTP: Non-invasive follicular thyroid neoplasm with

papillary-like nuclear features

### & List of Abbreviations

Abb. : Full term

NPC: Pronounced- nasopharyngeal carcinoma

**NPV**: Negative predictive value

**PBDEs**: Particularly polybrominated diphenyl ethers

**PGE2**: Prostaglandin E2

**PPARG**: Peroxisome proliferator-activated receptor, gamma

isoform

**PPV**: Positive predictive value

PRL: Prolactin

PTC : Papillary thyroid cancer PTH : Parathyroid hormone

**RET**: Rearranged during transfection

rT3 : Reverse Triiodothyronine RXRs : Retinoic acid X receptors

**SFN**: Suspicious for Follicular Neoplasm

SI : Signal intensitySN : Solitary noduleT3 : Triiodothyronine

T4: Thyroxine

**TBG**: Thyroxin-binding globulin

**TERT**: Telomerase reverse transcriptase

**TGF-β**: Thyroid growth factor β

**TIRADS**: Thyroid Imaging, Reporting, and Data System

**TREs**: Thyroid response elements

TRH : Thyrotrophin-releasing hormoneTSH : Thyroid-stimulating hormone

**US** : Ultrasonography

**USPSTF**: Us Preventive Services Task Force

## **LIST OF TABLE**

| Table No           | Subjects                                                                                                          | Page |
|--------------------|-------------------------------------------------------------------------------------------------------------------|------|
| <b>Table (1):</b>  | Some common sources of iodine in adults USA                                                                       | 14   |
| <b>Table (2):</b>  | Comparison of the binding of thyroid hormones to carrier proteins                                                 | 19   |
| <b>Table (3):</b>  | ACR-TIRADS scores                                                                                                 | 41   |
| <b>Table (4):</b>  | ACR-TIRADS nodule features and associated points for each characteristic                                          | 42   |
| <b>Table (5):</b>  | Bethesda System for cytologic diagnosis of thyroid nodules                                                        | 46   |
| <b>Table (6):</b>  | Bethesda System for cytologic diagnosis of thyroid nodules                                                        | 103  |
| <b>Table (7):</b>  | Demographic characteristics of the studied cases                                                                  | 113  |
| <b>Table (8):</b>  | Clinical findings among the studied cases                                                                         | 114  |
| <b>Table (9):</b>  | Laboratory findings among the studied cases                                                                       | 115  |
| <b>Table (10):</b> | Radiological findings among the studied cases                                                                     | 115  |
| <b>Table (11):</b> | FNAB finding according to Bethesda classification                                                                 | 116  |
| <b>Table (12):</b> | Final diagnosis findings among the studied cases                                                                  | 117  |
| <b>Table (13):</b> | Comparison according to final diagnosis regarding demographic characteristics using independent test.             | 118  |
| <b>Table (14):</b> | Comparison according to biopsy findings regarding clinical findings using independent t-test                      | 118  |
| <b>Table (15):</b> | Comparison according to biopsy findings regarding laboratory findings using independent t-test                    | 120  |
| <b>Table (16):</b> | Comparison according to final diagnosis regarding neck ultrasound groups classification using independent t-test. | 121  |
| <b>Table (17):</b> | Comparison according to final diagnosis finding regarding FNAB Bethesda classification.                           |      |

# ∠List of Table

| Table No           | Subjects                                                                                      | Page |
|--------------------|-----------------------------------------------------------------------------------------------|------|
| <b>Table (18):</b> | Comparison according to final diagnosis regarding ADC Ratio using independent t-test          | 125  |
| <b>Table (19):</b> | Diagnostic performance of ADC ratio in diagnosing thyroid malignancy using independent t-test | 126  |
| <b>Table (20):</b> | Diagnostic characteristics of FNAB and ADC ratio ≤0.90 in diagnosing thyroid malignancy       | 127  |

## **LIST OF FIGURES**

| Figure No           | Subjects                                                                                                                            | Page |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure (1):         | Thyroid during development and descent, showing possible sites of ectopic thyroid tissue, thyroglossal cysts and the pyramidal lobe | 6    |
| Figure (2):         | Thyroid gland anatomy                                                                                                               | 8    |
| <b>Figure (3):</b>  | The thyroid gland with its blood supply and relations                                                                               | 9    |
| Figure (4):         | Histology of normal thyroid gland                                                                                                   | 12   |
| Figure (5):         | Chemistry of thyroid hormones                                                                                                       | 13   |
| Figure (6):         | Thyroid hormone synthesis and production                                                                                            | 18   |
| <b>Figure (7):</b>  | Effects of deiodinase enzymes (Bursuk, 2012)                                                                                        | 20   |
| <b>Figure (8):</b>  | Controlling of thyroid hormone secretion by the hypothalamus-hypothyroidism-thyroid axis                                            | 22   |
| Figure (9):         | Thyroid receptor gene                                                                                                               | 23   |
| <b>Figure (10):</b> | Figure 10: Mechanism of thyroid hormone action (Brent, 2012)                                                                        | 24   |
| Figure (11): TI     | -RADS classification of thyroid nodules                                                                                             | 44   |
| <b>Figure (12):</b> | The trend in thyroid cancer incidence in the North American population from 1999 to 2008, subdivided by gender                      | 58   |
| Figure (13):        | Sex distribution among the studied cases                                                                                            | 113  |
| <b>Figure (14):</b> | Clinical findings among the studied cases                                                                                           | 114  |
| <b>Figure (15):</b> | Neck ultrasound group classification among studied data                                                                             | 115  |
| <b>Figure (16):</b> | FNAB findings according to Bethesda classification                                                                                  | 116  |
| <b>Figure (17):</b> | Biopsy findings among the studied cases                                                                                             | 117  |
| <b>Figure (18):</b> | Comparison according to final diagnosis regarding patient with symptoms of hypothyroidism                                           | 119  |
| <b>Figure (19):</b> | Comparison according to final diagnosis regarding free T4                                                                           | 120  |
| <b>Figure (20):</b> | Comparison according to final diagnosis findings regarding the four groups classification of neck ultrasound findings               |      |

# € List of Figures

| Figure No           | Subjects                                                                                                              | Page |
|---------------------|-----------------------------------------------------------------------------------------------------------------------|------|
| <b>Figure (21):</b> | Comparison according to final diagnosis findings regarding the four groups classification of neck ultrasound findings | 122  |
| <b>Figure (22):</b> | Comparison according to final diagnosis of each category of Bethesda classification of FNAB                           | 124  |
| <b>Figure (23):</b> | Comparison according to biopsy findings regarding ADC ratio                                                           | 125  |
| <b>Figure (24):</b> | ROC curve for ADC ratio in diagnosing thyroid malignancy                                                              | 126  |
| <b>Figure (25):</b> | Diagnostic characteristics of FNAB and ADC ratio $\leq$ 0.90 in diagnosing thyroid malignancy                         | 127  |

### INTRODUCTION

Thyroid nodules are a common clinical problem. Epidemiologic studies have shown the prevalence of palpable thyroid nodules to be approximately 5% in women and1% in men living in iodine- sufficient parts of the world. In contrast, high-resolution ultrasound (US) can detect thyroid nodules in 19%–68% of randomly selected individuals, with higher frequencies in women and the elderly .The clinical importance of thyroid nodules rests with the need to exclude thyroid cancer, which occurs in 7%–15% of cases depending on age, sex, radiation exposure history, family history, and other factors (*Haugen et al.*, 2015).

The malignant nodules must be distinguished from benign thyroid nodules to correctly and efficaciously treat patients suffering from this pathology. (*Erdem et al.*, 2010)

Because clinical findings do not provide a definitive diagnosis, several useful, non-invasive imaging tests (such as ultrasonography (US) and radionuclide scintigraphy) can be used to determine which nodules should be histopathologically evaluated to rule out the possibility of thyroid malignancy. US has been used as a first step in the assessment of these nodules, but no single US criterion has been demonstrated to accurately differentiate benign nodules from malignant nodules; Furthermore, the

hazards associated with radiation exposure during radionuclide scintigraphy are unavoidable, and some functioning nodules (hot nodules) found on scintigraphy are malignant. (*Chen et al.*, 2016)

Despite great improvement in diagnostic techniques such as thyroid scan and CT scan of neck, there is still a large problem to use a non- invasive and reliable technique to differentiate benign from malignant thyroid nodules. Recent developments in MRI techniques may be of diagnostic value .Diffusion-weighted MR imaging (DWI) is an emerging technique for brain tumors. DWI is sensitive to changes in the microstructural organization of tissue that may affect water diffusion. It has been used to evaluate head and neck tumors, the Apparent Diffusion Coefficient (ADC) value is a quantitative parameter for distinguishing malignant tumors from benign thyroid nodules. (*Lamiss et al.*, 2014)

Diffusion-weighted imaging (DWI) is a type of functional MRI that is based on the diffusion of water molecules through the tissue of interest (ie, tumour tissue). DWI can provide crucial information regarding the molecular profile of the underlying pathology and pathophysiological mechanisms. Specifically, the diffusion of water molecules in malignant tumors is restricted, which results in a decreased apparent diffusion coefficient (ADC); this difference in the ADC facilitates the differentiation of

benign tumors from malignant tumours (*Henzler et al.*, 2010).

Apparent-diffusion-coefficient (ADC) is a quantitative parameter calculated from DWI combines the effects of capillary perfusion and water diffusion. ADC value is calculated for each pixel of the image and is displayed as a parametric map. By drawing regions of interests on these maps, the ADCs of different tissues can be derived (*Koh and Collins*, 2007).

Generally, malignant tumors have enlarged nuclei and show hypercellularity. These histopathologic characteristics reduce the extracellular matrix and the diffusion space of water protons in the extracellular areas, with a resultant decrease in the ADC value (*Wang et al.*, 2011).