

بسم الله الرحمن الرحيم

00000

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

	ملاحظات:
	s and on the bodies bodies bodies
المتعانية المعانية ا	
since 1992	

تربيحات وتكنوبوجبارها

PHYSIOLOGICAL AND ANATOMICAL STUDIES ON IN VITRO ROOTING AND ACCLIMATIZATION OF GLOBE ARTICHOKE

By

ABD-ALSLAM ALI ALI SHOKR

B.Sc. Agric. Coop. Sci., Agric. Higher Institute for Agric. Coope., 2012

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

in
Agricultural Sciences
(Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval sheet

PHYSIOLOGICAL AND ANATOMICAL STUDIES ON IN VITRO ROOTING AND ACCLIMATIZATION OF GLOBE ARTICHOKE

By

ABD-ALSLAM ALI ALI SHOKR

B.Sc. Agric. Coop. Sci., Agric. Higher Institute for Agric. Coope., 2012

Thi	s thesis fo	or M.Sc. deg	gree has	been app	prov	ed by:		
Dr.	Mohame	ed Wasfy M	ohamed	Elwan		•••••	• • • • • • •	• • • • • • • • • • • • • • • • • • • •
	Prof. of	Vegetable	Crops,	Faculty	of	Agriculture,	Suez	Canal
	Universit	ty.						
Dr.	Salama A	Abd El-Han	nid Abd	El-Hade		•••••	• • • • • • • • •	•••••
	Associate	e prof. of	Vegetabl	le Crops,	Fa	culty of Agi	ricultur	e, Ain
	Shams U	niversity						
Dr.	Hany Ga	ımal Abd E	l-Gawa			•••••	•••••	•••••
	Prof. of	Vegetable	Crops,	Faculty	of	Agriculture,	Ain	Shams
	Universit	ty						
Dr.	Mohame	d Emam Ra	agab			•••••	•••••	•••••
	Prof Em	eritus. of V	Vegetabl	e Crops,	Fa	culty of Agr	ricultur	e, Ain
	Shams U	niversity						

Date of examination: -- / -- / 2021

PHYSIOLOGICAL AND ANATOMICAL STUDIES ON IN VITRO ROOTING AND ACCLIMATIZATION OF GLOBE ARTICHOKE

By

ABD-ALSLAM ALI ALI SHOKR

B.Sc. Agric. Coop. Sci., Agric. Higher Institute for Agric. Coope., 2012

Under the Supervision of:

Dr. Mohamed Emam Ragab

Prof Emeritus. of Vegetable Crops, Dept. of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Hany Gamal Abd El-Gawad

Prof. of Vegetable Crops, Dept. of Horticulture, Faculty of Agriculture, Ain Shams University.

Dr. Shadia Adbellah Ismail

Senior Researcher of Vegetable Crops, Horticulture Research, Institute, Agricultural Research Center.

ABSTRACT

Abdalslam Ali Ali Shokr. Physiological and Anatomical Studies on *In Vitro* Rooting and Acclimatization of Globe Artichoke. Unpublished M.Sc. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2021.

In Egypt, the vegetative propagation of artichoke is still the only method to grow, due to keeping the original variety characteristics at the time of breeding. Adopting a tissue culture technique for vegetative propagation confers many advantages, like viral-free seedling and seedling bulk production. The goal of this study is to propagate artichokes using tissue culture techniques, as well as to improve the rooting percentage and the effectiveness of seedling acclimation in the greenhouse. In addition, anatomical study techniques were used to track the causes of weakening root development in vitro throughout the rooting stage. Explants were grown on a modified Murashige and Skoog (MS) medium, which had ammonium nitrate and potassium nitrate concentrations of 50, 75, and 100 percent of each, but no further changes were found. For multiplication, the developed cultures were moved to a modified MS medium containing 50 percent of both ammonium nitrate and potassium nitrate supplemented with BA at 0.5, 1.0, 1.5 mg/l and Kin at 1.0, 2.0, 4.0 mg/l or without any growth regulators. Micro shoots produced from the multiplication stage were transferred to the modified MS for roots. Both ammonium nitrate and potassium nitrate at 50% were added along with 0, 1.0, and 2.0 mg/l IBA or NAA mixed with βcyclodextrin at 2.0 and 4.0 g/l. Exvitro acclimatization was achieved by plating rooted shoots from the *in vitro* rooting stage in plastic pots filled with a mixture of peat moss: vermiculite: Perlite (1: 1: 1, V) or peat moss: Perlite at (1: 1 by volume) or peat moss: Perlite at (1: 1, V) or Perlite: vermiculite (1: 1, V). Each group of the pots was divided into two halves, the first was inoculated with mycorrhiza, but the other remained without inoculation. All pots were kept under a low tunnel established in a plastic greenhouse. According to the anatomical investigation, there was no structural difference between rooted and unrooted plants. By following the following technique, the artichoke may be effectively micro propagated through tissue culture: Initial explants have had a good survival rate due to sanitation with Clorox (5.25 percent) at 50% + 0.2 g/l HgCl2 for 20 minutes then planting on 50% ammonium nitrate and potassium nitrate in an MS modified medium. Kin at a concentration of 4.0 mg/l resulted in the greatest multiplication rate (number of shoots per cluster). NAA 2.0 mg/l + -cyclodextrin g/l was added to the in vitro rooting medium and was shown to be effective in obtaining the optimum root number/young shoot ratio. To obtain a high survival rate during ex vitro acclimation, a combination of Perlite: vermiculite (1:1) with mycrrhiza was used.

Key words: Globe artichoke, Micropropagation, Anatomical, Medium, Tissue culture, Cytokinins, Auxins, Acclimalization media.

ACKNOWLEDGEMENT

I wish to express sincere gratitude to Prof. Dr. **Mohamed Emam Ragab**, Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for his encouragement, guidance and help in presenting this thesis.

I wish to express my infinite thanks and deep appreciation to Prof Dr. **Hany Gamal Abd El-Gawad**, Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for his continuous supervision, encouragement and his sincere help during all steps of this work.

Also, I would never forget support of Dr. **Shadia Adbella Ismail**, Senior Researcher of Vegetable Crops, Horticulture Research, Institute, Agricultural Research Center, for her encouragement and help throughout this work.

Gratitude is extended to Dr. **Sayed Mohamed Abd-Elrahman** for provide area to carry out the experiments of this thesis in his lab., Selimar Group for Agricultural Development.

I Great thanks are also due to Dr. **Ola Hossain**, associate prof of Botany, Botany Department, Faculty of Agriculture, Ain Shams University, especially for her help and guidance in the anatomical study.

Finally, great thanks to my Father, Mother and my wife for their help and patience. I am grateful to my family that is my circle of strength and love, and to my friends.

CONTENTS

Title	Page
ABSTRACT	
ACKNOWLEDGEMENT	
LIST OF CONTENTS	
LIST OF TABLES	
LIST OF PLATES	
LIST OF ABBREVIATIONS	
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. In vitro propagation:-	3
2.1.1 Establishment stage	3
2.1.2. Effect of cytokinins on multiplication stage	4
2.1.2.1. Effect of benzyl adenine on multiplication stage	4
2.1.2.2. Effect of kinetin on multiplication stage	6
2.1.3. Effect of auxins on rooting stage	7
2.1.3.1. Effect of indole -3- butyric acid on rooting stage	8
2.1.3.2. Effect of naphthalene acetic acid on rooting stage	9
2.1.4.Effect of cyclodextrin on rooting stage	11
2.1.4.1. Effect of β-cyclodextrin on rooting stage	12
2.1.5. Effect of darkness on rooting stage	13
2.1.6. Effect of total phenolics on rooting stage	15
2.1.7. In Vitro culture effects in plant anatomy	16
2.2. Acclimatization	18
3. MATERIALS AND METHODS	22
4. RESULTS AND DISCUSSION	29
4.1. In vitro Culture Experiments of globe artichoke	29
4.1.1. Effect of medium concentrations on <i>in vitro</i> shoot number,	
shoot length and leaf number	29
4.1.2. Effect of two cytokinins BA and Kin during	
multiplication stage on in vitro shoot number, shoot length	

and leaf number	31
4.1.3. Effect of auxin during rooting stage	34
4.1.4. Effect of auxin and darkness during rooting stage	36
4.1.5. Effect of naphthalene acetic acid and Beta cyclodextrin	
during rooting stage	38
4.1.6. Effect of (naphthalene acetic acid & Beta cyclodextrin) and	
darkness during rooting stage	40
4.1.7. Effect of naphthalene acetic acid and indole butyric acid	
plus Beta cyclodextrin on total phenols in basal part during	
rooting stage	42
4.1.8. Anatomical study during rooting stage	44
4.1.8.1. Anatomical study basal part shoots without roots	
of in vitro during rooting stage	44
4.1.8.2. Anatomical study basal part shoots with roots of	
in vitro during rooting stage	45
4.2. Ex vitro acclimatization stage	46
4.2.1. Effect of medium mixture on plantlet survival percentage,	
plantlet height and leaf number/ plantlet	46
4.2.2. Effect of medium mixture on root fresh weight and total	
chlorophyll (SPAD)/ plantlet	49
4.2.3.Effect of medium mixture and microhayza on plantlet	
height, leaf number, root fresh weight and total chlorophyll	
(SPAD) / plantlet	50
6. SUMMARY AND CONCLUSION	52
7. REFERENCES CITED	54
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
No.		
1.	Basal nutrient medium composition of Murashige and	
	Skoog (MS) mg/l.	24
2.	Effect of different concentrations of ammonium nitrate	
	and potassium nitrate in Murashige and Skoog (MS)	
	medium on in vitro shoot number, shoot length and leaf	
	number of globe artichoke establishment stage	30
3.	Effect of different concentrations of benzyl adenine	
	(BA) and kinetin (kin) on in vitro shoot number, shoot	
	length and leaf number of globe artichoke during	
	multiplication stage	32
4.	Effect of different concentrations of naphthalene acetic	
	acid (NAA) and indole butyric acid (IBA) on in vitro	
	root induction, root number, root length and leaf	
	number of globe artichoke during rooting stage	35
5.	Effect of interaction between incubated conditions (light	
	& darkness) and growth regulators (NAA & IBA) on in	
	vitro root induction, root number, root length and leaf	
	number of globe artichoke during rooting stage	37
6.	Effect of different concentrations of naphthalene acetic	
	acid (NAA) and β- cyclodextrin on in vitro root	
	induction, root number, root length and leaf number of	
	globe artichoke during rooting stage	39
7.	Effect of interaction between incubated conditions (light	
	&dark) and growth promoters (NAA & Beta) on in vitro	
	root induction, root number, root length and leaf	
	number of globe artichoke during rooting stage	41

8.	Effect of different concentrations of naphthalene acetic	
	acid (NAA) and indole butyric acid (IBA) plus β -	
	cyclodextrin (BCD) on total phenols in basal part of in	
	vitro globe artichoke shoots during rooting stage	43
9.	Effect of medium mixture on plantlet survival	
	percentage, plantlet height and leaf number/ plantlet	
	during ex vitro acclimatization stage of globe artichoke	48
10.	Effect of different transplanting media on root fresh	
	weight and total chlorophyll (SPAD) of globe artichoke	49
11.	Effect of interaction between transplanting microhayze	
	and media on the development plant length, leaf	
	number, root fresh weight and total chlorophyll (SPAD)	
	of globe artichoke	51

LIST OF FIGURES

Fig.		
No.		Page
1.	Effect of different concentrations of ammonium nitrate and potassium nitrate in Murashige and Skoog (MS) media on <i>in vitro</i> Multiplication of globe artichoke after 4 weeks of culture	30
2.	Effect of different concentrations of benzyl adenine (BA) and kinetin (kin) on <i>in vitro</i> Multiplication of artichoke after 4 weeks of culture	33
3.	Effect of different concentrations of kinetin (kin) on <i>in vitro</i> Multiplication of artichoke after 4 weeks of	
4.	culture Effect of different concentrations of naphthalene acetic acid (NAA) on <i>in vitro</i> rooting of globe	33
5.	artichoke after 6 weeks of culture Effect of different concentrations of naphthalene	35
6.	acetic acid (NAA) and β- cyclodextrin on <i>in vitro</i> rooting of globe artichoke after 6 weeks of culture Effect of different concentrations of naphthalene	39
7.	acetic acid (NAA) and β- cyclodextrin on <i>in vitro</i> rooting of globe artichoke after 6 weeks of culture Morphology of the newly adventitious shoots	42
'·	developed after 6 weeks on rooting media showed no appearance for adventitious roots	44
8.	Anatomical study basal part shoots without rooting of in vitro	44
9.	Morphology of the newly adventitious shoots and roots (plant) developed after 6 weeks on rooting media	45
10.	Anatomical study basal part shoots with rooting of in	45

11. Best plantlet height of globe artichoke obtained after three Months of acclimatization using 1:1 (v/v)
Perlite: vermiculite

48

LIST OF ABBREVIATIONS

BAP 6-Benzylaminopurine

°C Degree Celsius

Ca Calcium

Ca(Clo)₂ Calcium hypochlorite

cm Centimeter g/l Gram/liter

GC% Percentage of Guanine and Cytosine

 H_2SO_4 Sulfuric acid $HgCl_2$ mercuric chloride IBA Indole butyric acid

K PotassiumKinKinetinMg Magnesiummg/l Milligram/liter

MS Murashige and Skoog

N Nitrogen

NAA Naphthalene acetic acid

μm Micromilli
P Phosphorous

pH Power of Hydrogen

ppm Part per million

QL Quoirin and Lepoivre medium

SCoT Start codon targeted SLS Sodium Lauryl Sulphate

SPAD Soil Plant Analysis Development

TE buffer A commonly used buffer solution in molecular biology

TH Tree height

UPGMA Unweighted pair group method with arithmetic mean

UV Ultraviolet

v/v Volume by volume

W Watt

w/v Weight by volume

INTRODUCTION

Globe artichoke (Cynara Scolymus L.) is one of the most important non-traditional vegetable crops in the composite family for export and the local marketing. The Mediterranean region and Southern Europe, considered as a habitat of the globe artichoke. It is grown for its flower heads, which are eaten raw or cooked, and the bases of the meatballs, which contain 56.5 g of water, 9.9 g of carbohydrates, 2.8 g of protein, 0.2 g of fat, 310 mg of phosphorus, 51 mg of calcium, 30 mg of sodium, and 11 mg of iron per 100 gm. It includes numerous antioxidants in addition to 150 mg vitamin A, 8 mg vitamin C, and 14 percent fibers. Globe Artichoke farming is concentrated in Egypt in northern areas, where the climate, soil, and skilled labor are ideal. The cultivated area exceeded 35081feddan, with an average yield of 8.63 tones per feddan (Ministry of Agriculture 2019). Following the entry of some promising international cultivars with greater and earlier output. Furthermore, employing proper growth methods as well as innovative crop harvesting and post-harvest processes and handling. These provide Egypt a major comparative advantage and a potential to boost exports to European markets like Italy, France, and Germany, as well as Arab nations like Lebanon and Saudi Arabia in the period between November and March.

One of the most important techniques of artichoke propagation is micropropagation technique using viral diseases, plants high number of seedlings in the short time, with less economical cost compared to the regular propagation methods.