

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. MININERRINA.	
1	5/15/20	1992	- 1 3 m. f

بمكات وتكنولوجبارته

Diagnostic yield of GeneXpert in bronchoalveolar lavage in smearnegative pulmonary tuberculosis

Thesis

Submitted for Partial Fulfillment of Master Degree in Chest Diseases and Tuberculosis

\mathfrak{P}_{χ} Rana Mahmoud El-Touny M.B.B.Ch

Under Supervision of

Prof. Emad El-Din AbdelWahab Koraa

Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Dr. Eman Badawy AbdelFattah

Assistant professor of Chest diseases Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH** the most beneficent and the most merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Emad El-Din**Abdel Wahab Koraa, Professor of Chest Diseases,
Faculty of Medicine, Ain Shams University for his kind guidance, valuable instructions and generous help.

I wish to send my sincere appreciation and gratitude to **Dr. Eman Badawy Abdelfattah**, Assistant professor of chest diseases, faculty of medicine, Ain Shams University for her meticulous supervision, devoted efforts and fruitful encouragement.

Finally, I would like to express my heartfelt thanks to My Family for their endless support till this work was completed.

Rana Mahmoud

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Study	3
Review of Literature	
Pulmonary Tuberculosis	4
GeneXpert Assay	32
Bronchoscopy in Pulmonary Medicine	48
Patients and Methods	60
Results	65
Discussion	76
Conclusion	83
Summary	84
References	87
Arabic Summary	

List of Abbreviations

Abb.	Full term
AFB	. Acid-fast bacilli
	. Acquired immunodeficiency syndrome
	. Alanine aminotransferase
AST	. Aspartate transaminase
	- . Bronchoalveolar lavage
CECT	. Contrast-enhanced CT
COPD	. Chronic obstructive pulmonary disease
CT	. Computed tomography
CT	. Cycle threshold
DM	. Diabetes mellitus
DNA	. Deoxyribonucleic acid
DST	. Drug susceptibility testing
ECDC	. European Centre for Disease Prevention
FIND	. Foundation of innovation New diagnostic
GERD	. Gastroesophageal reflux disease
Hb	. Hemoglobin
HIV	. Human immunodeficiency virus
HTN	. Hypertension
IHD	. ischemic heart disease
INR	. International normalized ratio
IPF	. Idiopathic pulmonary fibrosis
IRB	. Institutional Review Board
LED	. Light-emitting diodes
LJ	. Lowenstein Jenson
LPA	. Line probe assay
MDRTB	. Multidrug resistant tuberculosis

List of Abbreviations Cont...

Abb.	Full term
MDR-TB	. Multidrug-resistant tuberculosis
	. Mycobacterium tuberculosis complex
	. Nucleic acid amplification
NICE	. National Institute for Health and Clinical Excellence
NIH	. National Institute of Health
NTM	. Nontuberculous mycobacteria
PAHO	. Pan American Health Organization
PCR	. Polymerase chain reaction
PLT	. Platelet
PPD	. Purified protein derivative
PPV	. Positive predictive value
PT	. Prothrombin Time
PTB	. Pulmonary tuberculosis
RBCs	. Red blood cell
RR-TB	. Rifampicin-resistant TB
SR	. Sample reagent
ТВ	. Tuberculosis
TBB	. Transbronchial biopsy
TLC	. Total leucocyte count
WHO	. World Health Organization
ZN	. Zeihl Nelson

List of Tables

Table No.	Title	Page No.
Table (1):	Classification of Tuberculosis on the Clinical and Radiological Findings	
Table (2):	Antituberculosis regimens for scenarios	
Table (3):	Indications of flexible bronchoscopy	50
Table (4):	Indications for TBNA	55
Table (5):	Indications of Rigid Bronchoscopy	58
Table (6):	Contraindications of rigid bronchoscop	ру59
Table (7):	Demographic data of the study group	(n=50): 67
Table (8):	Comorbidities in the study group (n=2	21):68
Table (9):	Clinical manifestations in the study g	roup69
Table (10):	Radiological findings in the study grow	up70
Table (11):	Laboratory results of the study group	71
Table (12):	Smear Acid-Fast bacilli (AFB) in th	•
Table (13):	Comparing TB diagnosis of radiologic clinical suspected patients by smeand Bronchoalveolar lavage GeneXpert:	ar AFB (BAL)
Table (14):	Comparing T.B diagnosis by Lowenstein-Jensen (LJ) culture an GeneXpert using Chi square test:	BAL nd BAL
Table (15):	Comparing T.B diagnosis by smear A BAL L.J culture using Chi square test	FB and

List of Figures

Fig. No.	Title Page N	V o.
Figure (1):	Axial CECT chest mediastinal window of HIV seropositive pulmonary tuberculosis patient	
Figure (2):	Posteroanterior radiograph shows cavitary consolidation in right upper lobe with smaller opacity in periphery of left upper lobe	r
Figure (3):	A CT from a patient with confirmed TE pleural effusion with parenchyma involvement (sub-segmental consolidation in this particular case)	l 1
Figure (4):	Airway involvement with tuberculosis in a 41-year-old woman	a
Figure (5):	Chest radiograph (postero-anterior view)	16
Figure (6):	Tubercular Cavity	18
Figure (7):	The Tree-in-bud Branching Pattern	19
Figure (8):	The <i>rpoB</i> gene core region target sequence and molecular beacon technology	
Figure (9):	Xpert MTB/RIF assay overview	38
Figure (10):	Pentax FB-15V.	62
Figure (11):	Cepheid Xpert MTP/RIF	63
Figure (12):	Gender differences in study group	67
Figure (13):	Comorbidities in the study group	68
Figure (14):	Clinical manifestations in the study group	69
Figure (15):	Radiological findings in the study group	70
Figure (16):	Laboratory results of the study group	71
Figure (17):	Smear Acid-Fast bacilli (AFB) in the study	7
	group	72

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (18):	Comparing TB diagnosis of radiolog clinical suspected patients by smooth and Bronchoalveolar lavage GeneXpert	ear AFB (BAL)
Figure (19):	Comparing T.B diagnosis by Lowenstein-Jensen (LJ) culture a GeneXpert.	y BAL and BAL
Figure (20):	Comparing T.B diagnosis by sme and BAL L.J culture	ear AFB

Introduction

Tuberculosis (TB) continues to be one of the major endangering public health issues in the underdeveloped world. Microscopy examination of sputum smears for the revelation of acid-fast bacilli (AFB) and specific mycobacterial cultures have been the cornerstone in the diagnosis of pulmonary tuberculosis for many years. Mycobacterial culture (Löwenstein–Jensen) needs 3-6 weeks to grow. Hence, it cannot direct us to start the initial therapy in spite of being the gold standard and the most specific diagnostic test (*Shin et al.*, 2012).

Although sputum examination for acid-fast bacilli (AFB) is simple and economic, only 44% of cases are positive (*Shin et al., 2012*). In 2015, European Centre for Disease Prevention (ECDC) reported that, in Italy, in 2014, 68.1% of all TB cases were smear-negative (*ECDC, 2015*). Optimal management and better treatment response are not achieved in active smearnegative pulmonary tuberculosis due to delay in diagnosis and poor microbiological reliability (*WHO, 2014*).

Xpert MTB/RIF is a completely automated real-time hemi-nested PCR system that detects both Mycobacterium tuberculosis complex (MTB) genome and mutations that cause rifampicin resistance. The Scientific and Technical Advisory Board of the World Health Organization has avowed lately this PCR system as the most sensitive quick test for TB diagnosis in

samples obtained from the respiratory system (WHO, 2011). This assay performs and integrates the steps of bacterial lysis, DNA extraction, amplification, and amplicon detection utilizing a disposable plastic cartridge thus working as a "lab-on-chip" device that runs on the GeneXpert platform and it only demands less than 2 hours for the results to be obtained (Lawn et al., 2012).

AIM OF THE STUDY

The Aim of the study is to assess the diagnostic yield of fiberoptic bronchoscopy guided bronchoalveolar lavage GeneXpert (Xpert MTB/RIF assay) in a smear-negative or sputum scant suspected case of pulmonary tuberculosis.

Chapter 1

PULMONARY TUBERCULOSIS

ore than two billion people (about one-third of the world population) were estimated to be infected with *Mycobacterium tuberculosis*. In 2018, approximately 10 million individuals became ill with tuberculosis (TB), and 1.5 million died. Prompt diagnosis of active TB facilitates timely therapeutic intervention and minimizes community transmission (*Bernardo*, 2019).

The lungs are the major site for *Mycobacterium tuberculosis* primary infection and tuberculosis (TB) disease. Clinical manifestations of TB include primary TB, reactivation TB, laryngeal TB, endobronchial TB, lower lung field TB infection, and tuberculoma. Pulmonary complications of TB can include hemoptysis, pneumothorax, bronchiectasis, extensive pulmonary destruction, malignancy, and chronic pulmonary aspergillosis (*Pozniak*, *2019*).

Pulmonary tuberculosis (PTB) is a contagious disease caused by Mycobacterium tuberculosis. This microorganism not only infects the lung (pulmonary TB) but also other organs such as brain, kidneys and lymph nodes (extra pulmonary TB) (Saldaña et al., 2014).

Prevalence:

Tuberculosis (TB) constitutes a global public health problem with a greater impact in less industrialized countries. According to World Health Organization (WHO), there are around 8.7 million new cases every year out of which 0.5 million are children. The Pan American Health Organization (PAHO) notifies 250,000 cases each year with a yearly toll of around 20,000 deaths. It is estimated that in countries of low endemicity, tuberculosis in pediatric age represents less than 5% of all cases of tuberculosis while in high endemic countries; it could be as high as 20% (*Saldaña et al.*, 2014).

Risk Factors

Clinical suspicion for tuberculosis may be increased in patients with various risk factors. So, any individual at increased risk is eligible for targeted tuberculosis testing to identify and treat those with latent infection, prevent the development of active disease, and prevent further spread of tuberculosis. Risk factors for tuberculosis can be grouped into two categories:

- Factors that cause increased risk of exposure to tuberculosis,
 - a) Individuals at increased risk of exposure include immigrants from endemic regions (Asia, Africa, Russia, Eastern Europe, and Latin America).
 - b) Those with a low income and limited access to health care.
 - c) Intravenous drug users.