

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

N		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. MININERRINA.	
1	5/15/20	1992	- 1 3 m. f

بمكات وتكنولوجبارته

Retrospective study for TB cases in Kafr El-Shiekh Chest Hospital during the period between January 2010 and January 2019 and role of GeneXpert in diagnosis

Thesis

Submitted for Partial Fulfillment of Master Degree in Chest Diseases

Under supervision of

Prof. Dr. Mohamed Sherif Elbouhy

Professor of Chest Diseases
Faculty of Medicine, Ain shams University

Dr. Eman Ramzy Ali

Professor of Chest Diseases Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Sherif ELbouhy,**Professor of Chest Diseases, Faculty of Medicine, Ain shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Eman Ramzy Ali,** Professor of Chest Diseases, Faculty of Medicine, Ain shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Aml Yossif

List of Contents

Title	Page No.
List of Abbreviations	
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	2
Review of Literature	
Tuberculosis	3
Diagnostic Considerations	24
Management	51
Gene Expert	68
Patients and Methods	77
Results	79
Discussion	94
Summary	110
Conclusion	112
Recommendations	113
References	114
Arabic Summary	

List of Abbreviations

Abb.	Full term
AAFB	Alcohol and acid-fast bacillus
ADH	Antidiuretic hormone
AFB	Acid-fast bacilli
AIDS	Acquired immunodeficiency syndrome
	Alanine aminotransferase
ART	Antiretroviral therapy
BCG	Bacillus Calmette-Guérin
CAP	Community-acquired pneumonia
CBC	Complete blood cell
CDC	Centers for Disease Control and Prevention
CMV	Cytomegalovirus
COPD	Chronic obstructive pulmonary disease
CT	Computed tomography
DNA	Deoxyribonucleic acid
DOT	Directly observed therapy
ELISA	Enzyme-linked immunosorbent assay
ELISpot	Enzyme-linked immunospot
FDA	Food and Drug Administration
GI	Gastrointestinal
HIV	Human immunodeficiency virus
IFN-gamma	Interferon-gamma
IGRA	Interferon-gamma release assay
IL	Interleukin
IV	Intravenous
MDDR	Molecular detection of drug resistance
MDR-TB	Multi-Drug Resistant Tuberculosis

List of Abbreviations Cont...

Abb.	Full term
MODS	. Microscopic-observation drug susceptibility
MRI	. Magnetic resonance image
	Mycobacterium tuberculosis complex
MTD	. Mycobacterium tuberculosis direct
NAA	Nucleic acid amplification
NAAT	. Nucleic acid amplification testing
NPV	. Negative predictive value
NTP	National Tuberculosis control Program
PA	. Posteroanterior
PCR	Polymerase chain reaction
PET	. Positron emission tomography
PFGE	. Pulsed field gel electrophoresis
PPD	. Purified protein derivative
PPV	. Positive predictive value
QFT-GIT	. QuantiFERON-TB Gold In-Tube
RIF	Resistance to rifampin
RNA	. Ribonucleic acid
SAT	Self-administered therapy
SPECT	. Single-photon emission CT
TB	. Tuberculosis
TLA	. Thin-layer agar
TNF- α	. Tumor necrosis factor–alpha
VNTR	. Variable numbers of tandem repeats
WHO	World Health Organization
XDR-TB	Extremely Multi-Drug Resistant Tuberculosis

List of Tables

Table No.	Title Page N	0.
Table (1):	Distribution of the studied cases according to number of tuberculosis cases.	79
Table (2):	Distribution of the studied cases according to demographic data	79
Table (3):	Comparison between the two studied groups according to age	80
Table (4):	Comparison between the two studied groups according to sex.	80
Table (5):	Distribution of tuberculosis cases during the period from 2010 – 2019	81
Table (6):	Distribution of pulmonary tuberculosis cases during the period from 2010 – 2019	82
Table (7):	Distribution of extra pulmonary tuberculosis cases during the period from	
Table (8):	2010 – 2019 Radiological findings in patients with pulmonary tuberculosis (n = 981)	
Table (9):	Extent of radiological findings in cases with pulmonary TB.	
Table (10):	Results of tuberculin skin test all cases	85
Table (11):	Degree of positivity of tuberculin skin test	85
Table (12):	Results of sputum examination for assessment of pulmonary tuberculosis	86
Table (13):	Sputum positivity for assessment of pulmonary TB cases in different years	86
Table (14):	Methods of examination and diagnosis of sputum for assessment of pulmonary TB	
Table (15):	Sputum negativity for assessment of pulmonary TB cases in different years	

List of Tables Cont...

Table No.	Title	Page No.
Table (16):	Distribution of extra pulmonar according the site of affection (to 208).	otal ≠
Table (17):	Cases with treatment failure in related total number of cases	
Table (18):	Distribution of cases with tre- failure in different years	
Table (19):	Comorbidity in cases treatment failure	
Table (20):	Outcome of tuberculosis patients complete course of treatment	
Table (21):	Distribution of cases with tre- failure in different years	
Table (22):	Agreement (sensitivity, specificity accuracy) in detection pulmonary	•
Table (23):	Agreement (sensitivity, specificity accuracy) in detection Extra Pulmor	

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	M. tuberculosis (stained red) in t Cording M. tuberculosis (H3' culture on the luminescent micro	7Rv strain)
Figure (3):	Axial noncontrast enhanced tomography with pulmonary wi a cavity with an irregular wall apex of a 37-year-old man wh with cough and fever	ndow shows in the right o presented
Figure (4):	Coronal reconstructed tomography image shows the cavity in a 37-year-old man wh with cough and fever	right apical to presented
Figure (5):	Axial chest computed tomographintravenous contrast with window setting shows a right a walled cavity and surrounce consolidation in a 43-year-old presented with cough and fever.	pulmonary apical thick- ading lung l man who
Figure (6):	-	computed consolidated, lobe with a ected to a man who
Figure (7):	Axial chest computed tomographintravenous contrast with window setting through the midal large, irregular-walled cavity and air-fluid level and two smalling a 43-year-old man who precough and hemoptysis	pulmonary -chest shows with nodules dller cavities sented with

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (8):	Coronal reconstructed tomography image shows the lin with irregular nodules and rig nodular opacities in a 43-year-opresented with cough and hemography.	ght mid-lung old man who
Figure (9):	This radiograph shows a p typical radiographic findings of	
Figure (10):	Anteroposterior chest radiograp patient who presented to the department (ED) with cough and	e emergency
Figure (11):	Lateral chest radiograph of a posterior segment right upper consistent with active tuberculor	lobe density
Figure (12):	This chest radiograph shows as the first costochondral junction year-old man who presented with fever. Further clarification with tomography is needed	ons of a 37- th cough and th computed
Figure (13):	This posteroanterior chest radio right upper lobe consolidation wolume loss (elevated horizontal a cavity in a 43-year-old man with cough and fever	graph shows vith minimal l fissure) and ho presented
Figure (14):	The posteroanterior chest radio a large cavity with consolidation in the lingular peleft upper lobe in a 43-year-opresented with cough and hemographics.	graph shows surrounding ortion of the ld man who
Figure (15):	Pulmonary tuberculosis with air	r-fluid level66
Figure (16):	The <i>rpoB</i> gene core region targand molecular beacon technolog	

Introduction

Tuberculosis is a contagious bacterial disease, that is caused by infection with TB bacilli either by inhalation, ingestion or direct contact with TB bacilli (*Caylà and Orcau*, 2011).

Anyone can get tuberculosis, but certain factors can increase the risk of the disease. These factors include: weakened immune system, malnutrition, very young or advanced age, poverty and substance abuse and health care work (*Zachary*, 2015).

Early detection of the disease, effective chemotherapy and prevention of transmission of the disease is an important factors for decline of TB cases (*World Health Organization*, 2015).

The prevalence rate of TB in Egypt was 26 per 100,000 people according to the World Health Organization (WHO) estimate in 2014, while the incidence rate was 15 per 100,000 people.

Screening, diagnosis, notification and registration of TB cases was implemented all over Egypt according to national TB strategy of the National Tuberculosis control Program (NTP) (National Tuberculosis control program, 2016).

Recent methods for diagnosis of TB bacilli like gene expert which diagnose and show the sensitivity of TB bacilli to rifampicin and the new method for treatment and give us great help for diagnosis and proper treatment of TB.

AIM OF THE WORK

The aim of this study is to find out tuberculosis pattern in Kafr EL-Shiekh Governorate during the period between January 2010 and January 2019 and role of GeneXpert in diagnosis of TB.

Chapter 1

TUBERCULOSIS

Tuberculosis (TB) is an ancient human disease caused by Mycobacterium tuberculosis which mainly affects the lungs, making pulmonary disease the most common presentation. However, TB is a multi-systemic disease with a protean presentation. The organ system most commonly affected include the respiratory system, the gastrointestinal (GI) system, the lymphoreticular system, the skin, the central nervous system, the musculoskeletal system, the reproductive system, and the liver. Evidence of TB has been reported in human remains dated thousands of years. For a human pathogen with known environmental reservoir, Mycobacterium tuberculosis has honed the art of survival and has persisted in human communities from antiquity through modern time (Adigun et al., 2020).

Etiology

M. tuberculosis causes tuberculosis. *M. tuberculosis* is an alcohol and acid-fast bacillus. It is part of a group of organisms classified as the *M. tuberculosis* complex. Other members of this group are, *Mycobacterium africanum*, *Mycobacterium bovis*, and *Mycobacterium microti*. Most other mycobacteria

organisms are classified as non-tuberculous or atypical mycobacterial organisms (*Forbes et al.*, 2018).

M. tuberculosis is a non-spore forming, non-motile, obligate-aerobic, facultative, catalase negative, intracellular bacteria. The organism is neither gram-positive nor gramnegative because of very poor reaction with the Gram stain. Weakly positive cells can sometimes be demonstrated on Gram stain, a phenomenon known as "ghost cells. "The organism has several unique features compared to other bacteria such as the presence of several lipids in the cell wall including mycolic acid, cord factor, and Wax-D. The high lipid content of the cell wall is thought to contribute the following properties of M. tuberculosis infection: (Jilani et al., 2020)

- Resistance to several antibiotics
- Difficulty staining with Gram stain and several other stains
- Ability to survive under extreme conditions such as extreme acidity or alkalinity, low oxygen situation and intracellular survival(within the macrophage)

The Ziehl-Neelsen stain is one of the most commonly used stains to diagnose T.B. The sample is initially stained with carbol fuchsin (pink color stain), decolorized with acid -alcohol and then counter-stained with another stain(usually, blue