

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. CIVILLE HELLA.	
1	5/15/20	1992	

بمكات وتكنولوجبارته

Correlation between Primary Knee Osteoarthritis and Metabolic Syndrome among Egyptian Patients

Thesis

Submitted for Partial fulfillment of Master Degree in Internal Medicine

$\Im \gamma$ Sabreen Abdelkader Mahmoud

(M.B.B.CH)

Resident of Internal Medicine and Rheumatology

Under Supervision of

Prof. Dr. Amina Badreldin Abdelaziz

Professor of Internal Medicine and Rheumatology Faculty of Medicine, Ain Shams University

Ass. Prof. Dr. Nashwa ALy Morshedi

Assistant Professor of Internal Medicine and Rheumatology Faculty of Medicine, Ain Shams University

Dr. Sara Farid Samaan

Lecturer of Internal Medicine and Rheumatology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Amina Badreldin Abdelaziz**, Professor of Internal Medicine and Rheumatology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Dr. Mashwa ALy Morshedi, Assistant Professor of Internal Medicine and Rheumatology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Sara Farid Samaan**, Lecturer of Internal Medicine and Rheumatology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

Sabreen Abdelkader Mahmoud

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	vii
Introduction	1
Aim of the Work	4
Review of Literature	
Osteoarthritis	5
Metabolic Syndrome	42
Patients and Methods	87
Results	95
Discussion	111
Summary and Conclusion	117
Recommendations	119
References	120
Arabic Summary	

List of Abbreviations

Abb.	Full term
AC	. Articular cartilage
ACEIs	Angiotensin receptor blockers and converting enzyme inhibitors
ACL	. Anterior Cruciate Ligament
ADAMTS	A disintegrin and metalloproteinase with thrombospondin motifs
ALT	Alanine aminotransferase
AMPK	. AMP-activated protein kinase
AP	. Anteroposterior
AST	Aspartate aminotransferase
BA	. Betamethasone Acetate
BMI	. Body mass index
BML	. Bone marrow lesions
BSP	. Beta-methasone Sodium Phosphate
CAD	Coronary artery disease
CBC	. Complete blood count
CCL5	. Chemokine ligand 5
COX-2	. Cyclooxygenase-2
CR	. Conventional Radiology
CRP	. C-reactive protein
CS	. Corticoids
CVD	. Cardiovascular diseases
DM	. Diabetes mellitus
DMM	. Destabilization of the medial meniscus
DNA	. Deoxyribonucleic acid
DPP	. Diabetes Prevention Program
DPP4	. Dipeptidyl peptidase 4
ECM	. Extracellular matrix

List of Abbreviations Cont...

Abb.	Full term
EGIR	. European Group for the Study of Insulin Resistance 1999
ESCEO	Economic Aspects of Osteoporosis and Osteoarthritis
ESR	. Erythrocyte sedimentation rate
FDA	. Food and Drug Administration
FFAs	. Free fatty acids
FGFs	. Fibroblast growth factors
GAG	. Glycosaminoglycan
GHSR-1a	. GH secretagogue receptor 1a
GLP-1	. Glucagon-like-peptide 1
GLUT-1	. Glucose transporters
HAQ	. Health assessment questionnaire
HAQ-DI	. Health Assessment Questionnaire-Disability Index
HDL	. High-density lipoprotein
HIF2α	Hypoxia-inducible factor 2α (),
HLA	. Human leukocyte antigen
HMW	. High molecular weight
HOMA-IR	. Homeostasis Model Assessment-Insulin Resistance
HPLC	. High-performance liquid chromatography
IDF	. International Diabetes Federation
IGFs	. Insulin-like growth factors
IGT	. Impaired glucose tolerance
IL	. Interleukin
IPFP	. Infrapatellar fat pad
IR	. Immediate Release

List of Abbreviations Cont...

Abb.	Full term
IRS	Insulin receptor substrate
	Kellgren and Lawrence
KOA	
LAR	Leptin/adiponectin ratio
LDL	Low-density lipoprotein
LKB4	Leukotrienes
MA	Methylprednisolone Acetate
MCP-1	Monocyte chemoattractant protein 1
MetS	Metabolic syndrome
MMP	Matrix metalloproteinases
MRC	Mitochondrial electron transport chain
MRI	Magnetic Reasonant Imaging
MT	Meniscal tear
MTP	Metatarsophalangeal
NAFLD	Non-alcoholic fatty liver disease
NAMPT	Nicotinamide phosphoribosyltransferase
NCEP	National Cholesterol Education Program
ncRNA	Non-coding RNA
NFκB	Nuclear factor kappa B
NGF	Nerve growth factor
NHANES	.National Health and Nutrition Examination Survey
NO	Nitric oxide
NOS2	Nitric oxide synthase
NPY	Neuropeptide Y
NSAIDs	Non-steroidal anti-inflammatory drugs
OA	Osteoarthritis
OxLDL	Oxidized LDL

List of Abbreviations Cont...

Abb.	Full term
PGE2	Prostaglandin E2
	Protein Kinase C
PMN	Polymorphonuclear
PON-1	· -
PRP	Platelet rich plasma
	. Polyunsaturated fatty acids
	. Renin-angiotensin system
RF	. Rheumatoid Factor
ROS	. Reactive oxygen species
	. Saturated fatty acids
SGLT2	. Sodium-glucose co-transporter 2
T2DM	. Type 2 diabetes mellitus
TA	. Triamcinolone Acetate
TGFβ	Transforming growth factor-β
TGs	. Triglycerides
TH	. Triamcinolone Hexacetonide
TNF	. Tumor Necrosis Factor
TNF-α	. Tumor necrosis factor alpha
US	. Ultrasound
VEGF	. Vascular Endothelial Growth Factor
VLDL	. Very-low-density lipoprotein
WBC	. White Blood Cell
WC	. Waist circumference
WHO	. World Health Organization
WOMAC	Western Ontario and McMaster Universities
	Osteoarthritis Index

List of Tables

Table No.	Title	Page No.
Table (1):	ACR revised Criteria for early of knee OA 2016.	_
Table (2):	K-L score of Osteoarthritis	31
Table (3):	Diagnostic Criteria for Metabolic S	Syndrome 67
Table (4):	Description and Comparison betw A and Group B regarding Demogra	-
Table (5):	Description and Comparison betw A and Group B regarding some commetabolic syndrome	mponents of
Table (6):	Description and Comparison betw A and Group B regarding knee x-r	-
Table (7):	Descriptive and Comparison betw A and Group B regarding some data	laboratory
Table (8):	Comparison between Group A arregarding Blood glucose (FBG,2HPP,HBAIC) and insuliinsulin, Insulin resistance)	e level n (Fasting
Table (9):	Comparison between Group A arregarding lipid profile	-
Table (10):	Comparison between Group A arregarding HAQ and WOMAC	-
Table (11):	Correlation of HAQ and WO components of metabolic syndrome (OA with metabolic syndrome)	e in group A
Table (12):	Relation between HAQ with sn hypertension in group A (OA with syndrome)	h metabolic

List of Tables Cont...

Table No.	Title	Page No.
Table (13):	Relation between X-ray demographic data in group metabolic syndrome)	A (OA with
Table (14):	Relation between X-ray gradin and some laboratory data in with metabolic syndrome)	group A (OA

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Waist Circumference in OA patie both groups	
Figure (2):	Showing prevelance of smoking, di and hypertension in OA patients i groups	n both
Figure (3):	Showing Knee X-ray grading is patients in both groups	in OA
Figure (4):	Fasting glucose difference among g and group B.	_
Figure (5):	Insulin Resistance difference amore Pts in both groups.	-
Figure (6):	Showing Lipid Profile among OA pain both groups	
Figure (7):	Showing HAQ score difference amount pts in both groups.	-
Figure (8):	Showing relation between HAQ and	l WC 107
Figure (9):	Showing relation between HAQ and	l TG 107
Figure (10):	Showing relation between HAG fasting glucose	=

Introduction

Osteoarthritis (OA) is a chronic, debilitating joint disease characterized by degenerative changes in the bones, cartilage, menisci, ligaments, and synovial tissues and is therefore considered a disease of the whole joint (*Wick et al.*, 2014).

Metabolic syndrome is defined as presence of any three components out of five, i.e., high waist circumference (in males \geq 94 cm, in females \geq 80 cm),Raised triglycerides: \geq 150 mg/dl (1.7 mmol/l) or history of specific treatment for this lipid abnormality, low HDL (< 40 mg/dl (1.03 mmol/l) in males and < 50 mg/dl (1.29 mmol/l) in females or lipid-lowering medication), hypertension (\geq 130/85 mmHg or treatment for hypertension), Raised Fasting plasma gluocose: (\geq 100 mg/dl or previously diagnosed type 2 DM (*Alberti et al.*, 2009).

Knee is the largest synovial joint in humans; it is composed by osseous structures (distal femur, proximal tibia, and patella), cartilage (meniscus and hyaline cartilage), ligaments and a synovial membrane. The latter is in charge of the production of the synovial fluid, which provides lubrication and nutrients to the avascular cartilage (*Sharma et al.*, 2017).

Metabolic syndrome may affect the occurrence of OA through low-grade inflammation, by altering the microvasculature of subchondral bone, or by causing neuromuscular impairment (*Richards et al.*, 2016).

Metabolites characteristics including energy metabolism and lipid and carbohydrate metabolism in the OA patients' synovial tissue cultures were significantly decreased compared with those with little or no evidence of the disease (Zhang et al., 2015).

epidemiological Recent and clinical data have highlighted that a metabolic syndrome (MetS) rather than obesity itself has the greatest impact on the initiation and severity of OA (Haugen et al., 2011).

Beyond the role of common pathogenic mechanisms for metabolic diseases and osteoarthritis (i.e., low-grade inflammation and oxidative stress), metabolic diseases have a direct systemic effect on joints. In addition to the impact of weight, obesity-associated inflammation is associated with osteoarthritis severity and may modulate osteoarthritis progression (Courties et al., 2017).

In OA, the synovial fluid has been found to contain multiple inflammatory mediators including plasma proteins (Creactive protein, proposed as a marker for development and progression of OA), prostaglandins (PGE2), leukotrienes (LKB4), cytokines (TNF, IL1β, IL6, IL15, IL17, IL18, IL21), growth factors (TGFB, FGFs, VEGF, NGF), nitric oxide, and complement components (Robinson et al., 2016).

The role of inflammation is not well-understood and there is an ongoing debate to determine if the inflammatory reaction triggers the OA changes, or instead, the inflammation is secondary to the OA changes (Ayhan et al., 2014).