

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. CIVILLE HELLA.	
1	5/15/20	1992	

بمكات وتكنولوجبارته

The In Vivo Expression of Gamma Secretase Catalytic Subunit (Presenilin) in Patients with Chronic Lymphocytic Leukemia)

Thesis

Submitted for Partial Fulfillment of Master Degree in **Internal Medicine**

By

Engy Alaa Eldin Loly Abbas

M.B.B.Ch

Under supervision of

Prof. Dr. Mohamed Osman Azzazi

Professor of Internal Medicine, Clinical Hematology and Bone Marrow Transplantation Faculty of Medicine, Ain Shams University

Prof. Dr. Amal Mostafa ElAfifi

Professor of Internal Medicine, Clinical Hematology and Bone marrow Transplantation Faculty of Medicine, Ain Shams University

Prof. Dr. Nermeen Adel Nabih

Assistant Professor of Internal Medicine, Clinical Hematology and Bone Marrow Transplantation Faculty of Medicine, Ain Shams University

Dr. Verna Adib Shawky

Lecturer of Internal Medicine, Clinical Hematology and Bone Marrow Transplantation Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

Id like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Osman Azzazi,** Professor of Internal Medicine, Clinical Hematology and Bone Marrow Transplantation, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Amal Mostafa ElAfifi**, Professor of Internal Medicine, Clinical Hematology and Bone marrow Transplantation, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dr. Mermeen Adel Mabih**, Assistant Professor of Internal Medicine, Clinical
Hematology and Bone Marrow Transplantation, Faculty of Medicine,
Ain Shams University, for her great help, active participation and
guidance.

I wish to introduce my deep respect and thanks to **Dr. Oerna Adib Shawky**, Lecturer of Internal Medicine, Clinical Hematology and Bone Marrow Transplantation, Faculty of Medicine, Ain Shams University, for her kindness, supervision and cooperation in this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Suha Raof,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literatuer	
Chronic Lymphocytic Leukemia	5
Gamma Secretase	55
Gamma Secretase Inhibitors in Malignancy	61
Patients and Methods	68
Results	78
Discussion	90
Summary	100
Conclusion	103
Recommendations	104
References	105
Arabic Summary	

List of Tables

Table No	. Title	Page No.
Table (1):	Buffer RLT was added to pelleted leucocytes	70
Table (2):	Genomic DNA elimination reaction compone	ents72
Table (3):	Reverse transcription master mix preparation	72
Table (4):	Comparison between the patient group a control group using Chi -Square test as rega and sex	ard Age
Table (5):	The clinical characteristics of CLL patients is in the study	
Table (6):	The laboratory characteristics of CLL included in the study	
Table (7):	The Qualitative data of CLL patients include study	
Table (8):	Comparison between the patient and the groups as regard the expression of gamma so catalytic subunit (presenilin 2) using Mann-V test	ecretase Whitney
Table (9):	Correlation between laboratory characteristic CLL patients and gamma secretase catalytic presenilin 2 gene expression	subunit
Table (10):	Correlation between expression of gamma so catalytic subunit presentilin2 with the characteristics of CLL patients included in the	major
Table (11):	Comparison between control and different to CLL patients included in the study as reggamma secretase catalytic subunit pre-expression using Kruskal Wallis test	ard the senilin2
Table (12):	Kaplan Meier analysis for overall survival studied patients	of the
Table (13):	Kaplan Meier analysis for the relation between Gamma secretase and overall survival of the patients	level of studied

List of Figures

Fig. No.	Title	Page No.
Figure (1).	Typical features of CLL/SLL	0
Figure (1):		
Figure (2):	"Small-cell" component of CLL/SLL	
Figure (3):	Paraimmunoblasts	
Figure (4):	Richter's syndrome	
Figure (5):	Specific skin lesion.	
Figure (6):	Mantle cell lymphoma with typical features	34
Figure (7):	Mantle cell lymphoma. This case is complymphoma cells, which are almost the same small lymphocytes, and was difficult to disfrom small lymphocytic lymphoma immunohistological examination	e size as stinguish without
Figure (8):	Lymphoplasmacytic lymphoma with L265P	
Figure (9):	Bone marrow involvement of lymphoplas lymphoma	
Figure (10):	Suggested approach for treatment of diagnosed CLL	
Figure (11):	A NOTCH ligand is shown occupy extracellular portion of the NOTCH molecule	receptor
Figure (12):	NOTCH signaling pathway and clinical trisecretase inhibitors	
Figure (13):	Showing that expression of presenilin2 wa in CLL patients than control group	
Figure (14):	Receiver operating characteristic curve (RC	OC)82
Figure (15):	Showing that gamma secretase catalytic presently 2gene expression was higher in and resistant group in comparison to diagnosed group	relapsed newly

List of Figures (cont...)

Fig. No.	Title Pag	je No.
Figure (16):	Showing that the gamma secretase catalytic suburpresentilin expression was highest in resistarelapsed group then newly diagnosed CLL patienthen control group	ant nts
Figure (17):	Kaplan Meier analysis for overall survival of t studied patients	
Figure (18):	Kaplan Meier analysis for the relation betwe level of Gamma secretase and overall survival the studied patients	of

List of Abbreviations

Abb.	Full term
ADCC	Antibody dependent cell-mediated cytotoxicity
AEs	Adverseevents
<i>ALL</i>	Acute lymphoblastic leukemia
<i>AML</i>	Acute myeloid leukemia
<i>APP</i>	Amyloid -protein precursor
<i>ATM</i>	Ataxia telangiectasia mutated
BCL2	B cell lymphoma 2
BCR	B cell receptor
CDC	Complement-dependent cytotoxicity
CLL Chronic	lymphocytic leukaemia
CLL-IPI	Chronic Lymphocytic Leukemia Inter national Prognostic Index
DDR	DNA damage response
DLBCL	Diffuse large B-cell lymphoma
<i>EBMT</i>	European Society for Blood and Marrow Transplan tation
<i>EMA</i>	European Medicines Agency
FISH	Fluorescence in situ hybridization
<i>GS</i>	Gamma-secretase
<i>GSI</i>	Secretase inhibitors
HCT-CI	Hematopoietic Cell Transplantation-Specific Comorbidity Index
HSV	Herpes simplex virus
<i>IC</i>	Inhibitory concentration
ICD	Intracellular domain
IGHV Immuno	globulin heavy-chain genes
<i>LPL</i>	Lymphoplasmacytic lymphoma
	Mucosa-associated lymphoid tissue
	nal B-cell lymphocytosis
MCL	Mantle cell lymphoma

List of Abbreviations (Cont...)

Abb.	Full term
<i>MRD</i>	Minimal residual disease
<i>MZL</i>	Marginal zone B-cell lymphoma
NCT	
NGS	Next generation sequencing
	Releases the NOTCH intracellular domain
<i>NIH</i>	National Institutes of Health
NRM	Non relapse mortality
ORR	Overall response rate
<i>OS</i>	Overall survival
<i>PDAC</i>	Pancreatic adenocarcinoma
PEN2	Presenilin enhancer 2
<i>PFS</i>	Progression-free survival
PI3K	phosphoinositide 3-kinase
<i>PS</i>	Presenilin
<i>R</i> / <i>R</i>	Relapsed/refractory
RB1	Retinoblastoma gene
<i>RIC</i>	Reduced intensity conditioning
<i>RS</i>	Richter syndrome
SEER	Surveillance, Epidemiology, and End Results
	Program
TLS	Tumor lysis syndrome
	Ultraviolet rays effects
<i>W&W</i>	Watch and wait

INTRODUCTION

amma secretases are intramembranous multisubunit protease complexes that are composed of four core components (presenilin, nicastrin, presenilin enhancer 2(Pen2) and anterior pharynx-defective 1 (Aph1), and several associated proteins (*De Strooper and Annaert*, 2010).

Two presentilin genes and two Aph genes have been identified in the human genome, so there could be at least 6 different gamma secretase complexes containing different presentilin as Aph1 could exhibit distinct activities (Serneels et al., 2009).

Gamma secretase was primarily identified in Alzehimer's disease as it cleaves amyloid precursor protein (APP) (*Laguarta*, and *Pera*, 2010).

Gamma secretase cleaves various type 1 membrane proteins by regulated intramembrane proteolysis. The gamma secretase mediated cleavage releases the C terminal intracellular domain (ICD) of the substrate protein which may perform important signaling functions inside the cells. The group of gamma secretase substrates is large and constantly growing (*Haapasalo and Kovacs*, 2011).

Many of the identified substrates are intimately involved in tumorigenesis. Those substrates as NOTCH receptors and their ligands, CD 44, ErbB4, E-cadherin, and MUC1. Gamma

secretase may influence on tumorigenic also via its role in angiogenesis as many of substrates are shown to regulate the formation and development of new blood vessels (Boulton et al., 2008).

Many of physiological and pathological activities of gamma secretase is derived from its activity as a protease against NOTCH, a central molecule in the control of growth and differentiation (De Strooper et al., 1999).

NOTCH activation plays an important role in the genesis of T cell acute lymphoblastic leukemia (Weng et al., *2004*).

In contrast, the role of NOTCH activation in B cell malignancies is not clear (Chiaramnonte et al., 2003).

However, follicular dendiritic cells leaving NOTCH legand activate NOTCH and protect germinal center B cells from apoptosis (Yoon et al., 2009).

There are several reports of NOTCH activation in Hodgkin's lymphoma, multiple myeloma and chronic B cell lymphocytic leukemia (Jundt et al., 2002; Nefedova et al., 2008 and Rosati et al., 2009).

Due to the central role of gamma secretes in these malignancies, considerable efforts have been made to characterize this unique protease, however, to the best of our knowledge, all the studies were directed to an exo cell assay of gamma secretase expression and activity and even in vitro inhibition of gamma secretase activity in some cell lines of B cell malignancies (*Shelton et al.*, 2009; *Ramakrishnan et al.*, 2012 and Secchiero et al., 2017).

So, modulation or inhibition of gamma secretase activity and hence altered signal pathways, could be a light path as a line of therapy against various types of tumor cells (*Selkoe and Walfe, 2007; Shih and Wang, 2007 and Groth and Fortini, 2012*).

Chronic lymphocytic leukaemia (CLL), the most frequent type of leukaemia in adults, is a lymphoproliferative disorder that is characterized by the expansion of monoclonal, mature CD5⁺CD23⁺ B cells in the peripheral blood, secondary lymphoid tissues and bone marrow. CLL is an incurable disease with a heterogeneous clinical course, for which the treatment decision still relies on conventional parameters (such as clinical stage and lymphocyte doubling time) (*Bosch and Dalla-Favera*, 2019).

AIM OF THE WORK

The Aim of this work is to evaluate the in vivo expression of gamma secretase catalytic subunit (Presenilin) in patients with B cell lymphocytic leukemia.

Chapter 1

CHRONIC LYMPHOCYTIC LEUKEMIA

Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults and mainly affects the elderly (Zenz et al., 2010).

CLL is a B cell malignancy, where clonal CD5+CD19+CD23+ B cells accumulate in peripheral blood and infiltrate secondary lymphoid organs such as lymph nodes, spleen, and bone marrow (*Stilgenbauer et al. 2014*). The disease is highly heterogeneous clinically mostly due to hyper mutations of the immunoglobulin heavy-chain genes (IGHV), genomic aberrations, and recurrent gene mutations which associate with the clinical course.

Epidemiology

According to the National Cancer Institute's Surveillance, Epidemiology, and End Results Program (SEER), the estimated number of new cases of CLL in the United States in 2018 was 20,940, representing 1.2% of new cancer diagnoses and the number of deaths from CLL was 4510.7% of (SEER Cancer Stat Facts: all cancer deaths Chronic Lymphocytic Leukemia, National Cancer Institute, Bethesda, MD. Median age at diagnosis was 70, with the highest numbers of cases identified in the 65–74 yr age group.