

بسم الله الرحمن الرحيم

00000

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

	ملاحظات:
	s and no see to be the control of the control
خامتهانی میندانی AIN SHAMS UNIVERSITY	
since 1992	<i>f</i>

تربيحات وتكنوبوجبارها

Association between Follicular Fluid Estradiol and clinical pregnancy outcome in Intracytoplasmic Sperm Injection Cycles

Thesis

Submitted in Partial Fulfilment of M.D. Degree in Obstetrics & Gynaecology

By

Heba Abdel Wahab Ahmed

Master degree in Obstetrics and Gynecology (2017)

Supervised by

Prof. Mohamed Ahmed Al. Kady

Professor in Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Prof. Mohamed Hussein Mostafa.

Assistant professor in Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Dr. Dina Yahia Mansour.

Lecturer in Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Dr. Noha Refaat Mohamed

Lecturer in Clinical Pathology
Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2021

- First and foremost, thanks to ATTAM for giving me the power and strength to carry out this work.
- Words cannot express my deepest gratitude and appreciation to Professor.
- Prof. Mohamed Ahmed Al. Kady, Professor of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University, for his excellent guidance, powerful support, supervision and help throughout the accomplishment of this study.
- It is a great honor for me to take this opportunity to express my most deep respect and appreciation to Dr. Mohammed Hussain Mostafa, Assistant Professor of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University for his time and effort devoted for the revision, encouragement and correction of the script. I owe him more than I can express for his support and for all the long time he spent in revising every detail.
- It is a great honor for me to take this opportunity to express my most deep respect and appreciation to Dr. Dina Yahia Mansour, Lecturer of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University for her time and effort devoted for the

revision, encouragement and correction of the script. I owe him more than I can express for his support and for all the long time he spent in revising every detail.

It is a great honor for me to take this opportunity to express my most deep respect and appreciation to Dr. Noha Refaat

Mohamed, Icturer in Clinical Pathology Faculty of Medicine—
Ain Shams University for her time and effort devoted for the revision, encouragement and correction of the script. I owe him more than I can express for his support and for all the long time he spent in revising every detail.

🖎 Jast but not least, my true love goes to all my family.

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	VI
Protocol	
Introduction	1
Aim of the Work	5
Review of Literature	6
- Chapter (I): ICSI	6
- Chapter (II): Follicular Fluid	15
- Chapter (III): Estradiol and Oocyte M	aturation32
Embryo Gradin	37
Patients and Methods	61
Results	78
Discussion	115
Summary and Conclusion	123
Recommendations	128
References	131
Arabic Summary	

List of Abbreviations

Abbreviation : Meaning

AFC : Antral Follicular Count

Alpha FP : Alpha-Fetoprotein

AMH : Anti Mullarian Hormon

ARTs : Artificial Reproductive Technologies

ATII : Angiotensin II

Beta-EP : Beta-endorphin

BMI : Body Mass Index

BMP-15 : Bone Morphogenetic Protein-15

CA125 : Cancer Antigen 125

CEA : Carcino Embryonic Antigen

CES : Cumulative Embryo Score

E2 : Estradiol

EC : Early Cleavage

eNOS (NO) : Nitric Oxide Endothelial Isoform of NO

ESHRE : European Society of Human

Reproduction and Embryology

FF : Follicular Fluid

Fr : fragmentation rate

FSH : Follicle Stimulating Hormone

GES : Graduated Embryo Score

GH : Growth Hormone

GnRH : Gonadotrophin Relasing Hormone

HCY : Homocysteine

Quest of Abbreviations &

HGSOC : High-grade Serous Ovarian Cancer

HMG : Human Menopausal Gonadotropin

ICM : Inner Cell Mass

ICSI : Intra Cytoplasmic Sperm Insemination

IGF : Insulin-Like Growth Factors

IL : Interleukins

IVF : In Vitro Fertilization

IVM : Vitro Maturation

LH : Luteinizing Hormone

MI : Metaphase I

MII : Metaphase II

MS : mass spectrometry

NPBs : Nucleolar Precursor Bodies

O : Other

OCT4 : Ovarian Cancer Subtypes

OHSS : Ovarian Hyperstimulation

OMI : Oocyte Maturation Inhibitor

P4 : Progesterone

PCOS : Poly Cystic Ovary Syndrome

PGD : Preimplantation Genetic Diagnosis

POR : Ovarian Response

PRL : Prolactin

ROC : Receiver-Operating Characteristic

ROS : Reactive Oxygen Species

TAC : Total Antioxidant Capacity

Quelist of Abbreviations &

TE : Trophoectoderm

TESE : Testicular Sperm Extraction

TLM : Time-lapse microscopy

UPLC : Ultra Performance Liquid Chromatography

VEGF : Vascular Endothelial Growth Factor

WHO : World Health Organization

List of Tables

Table	Title	Page
No.		No.
Table (1)	Morphological grading of embryos based on	50
	fragmentation and blastomere size.	
Table (2)	Embryo scoring based on blastocyst	52
	expansion.	
Table (3)	Blastocyst scoring based on inner cell mass	52
	(ICM).	
Table (4)	Blastocyst scoring based on trophoectoderm	53
	(TE).	
Table (5)	Baseline characteristics of patients	78
Table (6)	Outcome measures in patients	79
Table (7)	Relation between follicular fluid or Serum	81
	E2 concentration and oocyte quality	
Table (8)	Relation between follicular fluid or Serum	84
	E2 concentration and embryo quality	
Table (9)	Relation between follicular fluid or Serum	87
	E2 concentration and chemical pregnancy	
Table (10)	Relation between follicular fluid or Serum	90
	E2 concentration and clinical pregnancy	
Table (11)	Receiver-operating characteristic (ROC)	93
	curve analysis for predictive value of FF E2.	
Table (12)	Receiver-operating characteristic (ROC)	95
	curve analysis for predictive value of Serum	
	E2.	

List of Tables Z

Table	Title	Page
No.		No.
Table (13)	Multivariable binary logistic regression	105
	analysis for prediction of MII-grading	
	Follicular fluid E2 concentration.	
Table (14)	Multivariable binary logistic regression	106
	analysis for prediction of MII-grading	
	Serum E2 concentration.	
Table (15)	Multivariable binary logistic regression	107
	analysis for prediction of embryo grading	
	based on Follicular fluid E2 concentration.	
Table (16)	Multivariable binary logistic regression	108
	analysis for prediction of embryo grading	
	based on Serum E2 concentration.	
Table (17)	Multivariable binary logistic regression	109
	analysis for prediction of chemical	
	pregnancy based on Follicular fluid E2	
	concentration.	
Table (18)	Multivariable binary logistic regression	110
	analysis for prediction of chemical	
	pregnancy based on Serum E2	
	concentration.	
Table (19)	Multivariable binary logistic regression	111
	analysis for prediction of clinicall pregnancy	
	based on FF E2 concentration.	

List of Tables &

Table	Title	Page No.
No.		No.
Table (20)	Multivariable binary logistic regression	112
	analysis for prediction of clinical pregnancy	
	based on Serum E2 concentration.	

List of Figures

Figure No.	Title	Page No.
Figure (1)	Stimulation protocol and folliculometry.	12
Figure (2)	Oocyte Injection.	13
Figure (3)	Classification of oocyte maturation.	36
Figure (4)	A. Classification of pronuclear morphology.	41
Figure (5)	Embryo scoring based on specific time points for embryo cleavage.	41
Figure (6)	The presence or absence of a cytoplasmic halo.	43
Figure (7)	Zygote classification.	44
Figure (8)	Examples of zygote scoring.	45
Figure (9)	A. High quality 8-cell embryo.	47
	Embryo grading: 8 cell, grade 4.	
Figure (10)	Embryos scoring.	48
Figure (11)	Examples of scored blastocyst	54
	according to(Gardner et al., 2000).	
Figure (12)	Embryo evaluation	56
Figure (13)	Oocyte Retrieval	69
Figure (14)	Box plot illustrating the relation	82
	between follicular fluid E2	
	concentration and MII maturity.	

List of Figures &

Figure No.	Title	Page No.
Figure (15)	Box plot illustrating the relation	83
	between Serum E2 concentration and	
	MII maturity.	
Figure (16)	Box plot illustrating the relation	85
	between follicular fluid E2	
	concentration and embryo quality.	
Figure (17)	Box plot illustrating the relation	86
	between Serum E2 concentration and	
	embryo quality.	
Figure (18)	Box plot illustrating the relation	88
	between follicular fluid E2	
	concentration and chemical	
	pregnancy.	
Figure (19)	Box plot illustrating the relation	89
	between Serum E2 concentration and	
	chemical pregnancy.	
Figure (20)	Box plot illustrating the relation	91
	between follicular fluid E2	
	concentration and clinical pregnancy.	
Figure (21)	Box plot illustrating the relation	92
	between Serum E2 concentration and	
	clinical pregnancy.	

List of Figures &

Figure No.	Title	Page No.
Figure	Receiver-operating characteristic	97, 98
(22)a	(ROC) curves for prediction of MII-	
(22)b	quality oocytes using follicular fluid or	
	Serum E2.	
	It has positive predictive value	
Figure	Receiver-operating characteristic	99,
(23)a	(ROC) curves for prediction of	100
(23)b	embryo grading using follicular fluid	
	or serum E2 concentration.	
	It has positive predictive value	
Figure (24)	Receiver-operating characteristic	101,
(24)a	(ROC) curves for prediction of	102
(24)b	chemical pregnancy using follicular	
	fluid or serum E2.	
	The variable had fair predictive value	
Figure (25)	Receiver-operating characteristic	103,
(25)a	(ROC) curves for prediction of clinical	104
(25)b	pregnancy using follicular fluid or	
	serum E2.	
	The variable had fair predictive value	

ABSTRACT

<u>Association between Follicular Fluid Estradiol and clinical</u> pregnancy outcome in Intracytoplasmic Sperm Injection Cycles

Hussein M1., Al-Kady M1., Abdel Wahab H1., Rushdy E2., Refaat N2., Yahia D1.

1Department of Obstetrics and Gynecology. Ain Shams University Maternity Hospitals

2Department of Clinical Pathology - Faculty of Medicine - Ain Shams University, Faculty of medicine-Al Azhar university.

* Correspondence: Mohamed Hussein Mostafa, Assistant professor, Department of Obstetrics and Gynecology — Faculty of Medicine — Ain Shams University — Abbasyia - Cairo - Egypt. Email: karimabdel2013@outlook.com.

Objective: This study aims to assess the accuracy of follicular fluid Estradiol level in predicting clinical pregnancy outcome, oocyte quality and embryo quality in women undergoing ICSI.

Patients and Methods: The current study was prospective study that included 180 women underwent Intra-cytoplasmic sperm injection (ICSI) procedure using Flexible Antagonist protocol. During oocyte retrieval, follicular fluids of mature follicles (>17 mm) aspirated. Follicular fluid concentrations of 17β-estradiol was determined by ELISA. Upon retrieval, oocytes were analyzed for hallmarks of maturity and classified as GV, MI, or MII based on appearance. Fertilization status observed at 24 h and the nutrient solution renewed, morphology of the dividing embryo was observed and 'embryo grading' done. At least in the two-cell stage embryo transfer were done at third or fifth day after the oocyte collection. Quantitative S.B HCG measured at 14 days post transfer, followed by a vaginal ultrasound 2 weeks later demonstrating an embryonic cardiac pulse.

Results: Our results showed that, the number of retrieved oocytes ranged from (1 to 33 oocytes) mean number 10±7. Follicular fluid E2 concentration ranged from 246±199 (0 to 700) (ng\ ml). Serum E2 concentration ranged from 2361±1583 (100 to 7589) pg\ml. The mean of total number oocytes was 10 with 53% of MII of good quality. And (47%) were of bad quality. All cases had normal fertilization. Number of transferred Embryos ranged from one to three embryos (good quality was of 63.9%), (bad quality was of 36.1) and 103 of cases had embryo transfer on day 5 ,77 had transfer on day 3. Chemical pregnancy was positive in 90 cases (50%) and the clinical pregnancy positive in 66 cases (36.7%). In follicular fluid E2 concentration ranged from 220 to 476 ng\ml that they had clinical pregnancy and ranges from 36 to 320 ng\ml had no clinical pregnancy.

Conclusion: Follicular fluid E2 concentration had fair predictive value in oocyte maturation, embryo quality, chemical and clinical pregnancy. But it was an independent predictor of MII-grading.

Key words: Follicular Fluid Estradiol, clinical pregnancy, Intracytoplasmic Sperm Injection, oocyte quality.