

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Diagnostic Delay in Pediatric Cancer; Causes and Effect on Survival Rates

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Doha Salama Hassan Hussein

M.B.B.Ch., Faculty of Medicine, Ain Shams University (2016)

Under supervision of

Prof. Safinaz Adel Elhabashy

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Heba Gomaa Abd Flraheem

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Maha Magdy Wahdan

Lecturer of Community, Environmental, and Occupational Medicine Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2022

Acknowledgment

First and foremost, I feel always indebted to ALIAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Safinaz Adel Elhabashy,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Heba Gomaa Abd Elraheem**, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Maha Magdy Wahdan**, Lecturer of Community, Environmental, and Occupational Medicine, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I am deeply thankful to patients and their caregivers who accept to share in our study and I wish all of patients speedy recovery.

I would like to thank my family very much for their support, help and no matter what I do, I will fulfill their right.

Doha Salama

Faculty Mission

The Faculty of Medicine of Ain Shams University prepares a trained doctor with competitive skill at the local and regional level, capable of teaching, learning and training for life and is committed to standards of medical service and professional ethics, and the college supports the continuous development of programs, courses and scientific research while keen to expand applied scientific research and health care programs to serve the needs of society and develop the environment.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	vi
Protocol	vii
Abstract	XV
Introduction	1
Review of Literature	3
Patients and Methods	36
Results	45
Discussion	70
Summary	84
Conclusion	
Recommendations	87
References	88

List of Abbreviations

Abb.	Full term
AFP	. Alpha-fetoprotein
	. Anaplastic lymphoma kinase
	. Acute lymphoblastic leukemia
	. Acute myelogenous leukemia
	. Casitas B-lineage lymphoma syndrome
CI	. Confidence interval
CML	. Chronic myelogenous leukemia
CMV	. Cytomegalovirus
CNS	. Central nervous system
COVID-19	. Coronavirus 19 disease
CPS	. Cancer predisposition syndromes
CSF	. Cerebral spinal fluid
CT	. Computed tomography
DNA	. Deoxyribonucleic acid
EBV	. Epstein-Barr virus
FMASU	. Faculty of Medicine, Ain Shams University
FWA	. Federal wide assurance
GLOW	. Global developmental-delay lung cysts over growth-Wilms tumor
HCG	. Human chorionic gonadotropin
	. Human Herpesvirus-8
HIC	. High-income countries
HIV	. Human immunodeficiency virus
HVA	. Homovanillic Acid
IARC	. International Agency for Research on Cancer
IQR	. Interquartile range
LIC	. Low-income countries.
LMICs	. Low- and middle-income countries
LT	. Lag Time

List of Abbreviations Cont...

MDS Myelodysplastic Syndrome
· · · · · ·
MIBG Metaiodobenzylguanidine
MRIMagnetic resonance imaging
NHLNon-Hodgkin lymphoma
OROdds ratio
PAHOU Pediatric and Adolescent Hematology
/Oncology Unit
PAX5 Paired Box 5
PETPositron emission tomography
PTPN11Protein Tyrosine PhosphataseNonReceptor
Type 11
Registry NIC Northern Ireland Cancer Registry
RMSRhabdomyosarcoma
rob Robertsonian Translocation
SARS-CoV-2 Severe acute respiratory syndrome
coronavirus 2
SD Standard deviation
SEER Surveillance, Epidemiology, and End Results
SPSS Statistical Package for the Social Sciences
TD Total time to diagnosis
TDD Time to definitive diagnosis
TP Parent time
TR Time to referral
U.S United States
USUltrasound
UV Ultraviolet
VMA Vanillylmandelic Acid.
WHO World Health Organization

List of Tables

Table No.	Title	Page No.
Table (1):	Pediatric cancers and associated predisposition genes	
Table (2):	When to consider a cancer predisp syndrome in a childhood cancer patier.	
Table (3):	Child cancer acronym	12
Table (4):	The clinical characteristics of chi	ldhood
	cancer	13
Table (5):	Clinical Red Flags Associated Childhood Malignancies	
Table (6):	Work-up of common pediatric malignate to assess primary tumor and pometastases	tential
Table (7):	Parent-related or Patient-related I Analyzed as Possible Correlates of De Different Studies	Factors lays in
Table (8):	Demographic data of the studied patie	
Table (9):	Family size, chronic condition, and insurance status	health
Table (10):	Parents/Caregivers' knowledge perception about pediatric cancer at t cancer diagnosis	and time of
Table (11):	Presenting symptoms among spatients	studied
Table (12):	Onset and course of the disease studied patients	among
Table (13):	Health care providers first contact patients/parents before referral specialized cancer care facility	ted by to a
Table (14):	Types of malignancies among the spatients	tudied

List of Tables Cont...

Table No.	Title	Page	No.
Table (15):	Site of primary cancer and metas among studied patients		50
Table (16):	Risk stratification for each type of candiagnosis		51
Table (17):	Treatment modalities and disease state evaluation		52
Table (18):	Overall survival and Event free surrates among studied patients		53
Table (19):	Different Time delay among studied par	tient	54
Table (20):	Different types of delay (days) and surtimes (days) according to type of child cancer diagnosed.	lhood	55
Table (21):	Comparison between different type childhood malignancies as regards diagnostic delay	total	57
Table (22):	Total diagnostic delay in relation to risk	ALL	57
Table (23):	Lag time for childhood cancer diagnosis respect to the patients' sociodemogracharacteristics, and parents' knowledge	aphic	58
Table (24):	Median lag time, presenting symptoms misdiagnosis	s and	
Table (25):	Lag time for childhood cancer diagnosis respect to the first health care facility health care provider	and	60
Table (26):	Comparison between gender, age grand socioeconomic statusas reddifferent types of diagnosis delay, Ovand Event Free Survival	gards verall	61

List of Tables Cont...

Table No.	Title	Page	No.
Table (27):	Effect of residence on different ty diagnosis delay, Overall and Event Survival	Free	62
Table (28):	Effect of type of cancer and who misdiagnosed or not on different ty delay of diagnosis, overall and even survival rates	hether ype of at free	64
Table (29):	Comparison between different sit cancer as regards different type of dia delay, Overall Survival and Event Survival	gnosis Free	66
Table (30):	Comparison between three risk cate leukemia and different types of Overall and Event Free Survival	delay,	68
Table (31):	Delay times, Overall and Event Frelation to presence of metastasis		68
Table (32):	Pearson Correlation between diagnostic delay and other variables	total	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Percentage of childhood cancer diagnosed per year in 17293 aged years	01-19
Figure (2):	Most common types of new cancers children aged 0-14	
Figure (3):	Five year Survival rate for different of childhood cancer	v -
Figure (4):	Various types of delays in the proceedance and undergoing cancer care.	
Figure (5):	Factors contributing to diagnostic and abandonment of treatment	•
Figure (6):	Different types of delay in diagnosis.	43
Figure (7):	Distribution of studied patients reg type of malignancy	arding
Figure (8):	Overall survival by Kaplan-Meier	53
Figure (9):	Event free time by Kaplan-Meier	53
Figure (10):	Box plot diagram for distribution of delay across diagnosis	•
Figure (11):	Box plot diagram for distributi diagnosis delay across diagnosis	
Figure (12):	Box plot diagram for total diagnostic in rural versus urban areas	•
Figure (13):	Box plot diagram for distribution of diagnostic delay across residence	
Figure (14):	Box plot diagram for Comparison be hematological malignancy and malignancy as regards diagnosis dela	solid
Figure (15):	Box plot diagram for diagnosis de misdiagnosis versus cancer diagnosis	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (16):	Box plot diagram for distribution of total diagnostic delay across site of cancer67	
Figure (17):	Box plot diagram for distribution of parent delay across site of cancer6	
Figure (18):	Box plot diagram for total diagn in metastatic versus non cancer	metastatic

Protocol

Diagnostic Delay in Pediatric Cancer; Causes and Effect on Survival Rates

Postgraduate Student: **Doha Salama Hassan Hussein**.

Degree: M.B.B.Ch., Faculty of Medicine, Ain shams university (2016)

Director: Safinaz Adel Elhabashy

Academic Position: Professor **Department:** Pediatrics

Co- Director: Heba Gomaa Abd Elraheem

Academic Position: Lecturer **Department:** Pediatrics

Co- Director: Maha Magdy Wahdan

Academic Position: Lecturer

Department: Community, environmental, and occupational medicine department **Faculty of Medicine**

Ain Shams University **2020**

What is Already Known on this Subject? And What does this Study Add?

In low and middle-income countries, advanced disease at presentation due to delayed diagnosis of cancer in children is common. Shorter lag times are associated with longer survival in patients with Wilms' tumor, and soft tissue sarcomas. However, there are limited studies regarding the determinants of delayed diagnosis.

Understanding the potential factors influencing the delayed diagnosis of cancer is needed to fill in the existing gap in knowledge and develop practical strategies to address the delay in cancer diagnosis among the pediatric population.

A study examining the delays in childhood cancer diagnosis in Egypt would be particularly important because of the wide prevalence of poverty, and cultural differences between people.

1. Introduction and Review

According to the 2016 estimates of the International Agency for Research on Cancer (IARC), 300,000 new cases of cancer in children less than 19 years are diagnosed in the world every year. Of these, 80% live in low and middle-income countries. Cancer is responsible for an estimated 80,000 cancer-related childhood deaths per year worldwide, with the largest share in developing countries (*Njuguna et al.*, 2016; *Chukwu et al.*, 2011).

Early diagnosis of childhood cancer as possible is crucial to reduce mortality. Children with cancer have improved response to treatment compared to those who are older, but childhood cancer progresses faster in the absence of treatment in any age group (*Stefan and Siemonsma*, 2011).

The delays in cancer diagnosis may be related to the parents, the health personnel or the health system. Health care providers are expected to make the diagnosis of cancer as early as possible, but most cancer symptoms are vague and nonspecific making it difficult to detect early (*Green et al.*, 2015).

Knowing the different levels of delay is the first step to improve the care, most of the studies addressing delay were done in high-income