

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

The Versatility of Usage of Hydrosurgical Debridement in Major Burns

Thesis

Submitted For Partial Fulfillment of Master Degree in Plastic, Burn and Maxillofacial Surgery

By

Mohamed Reda Elsayed

M.B.B.Ch. Mansoura University

Under supervision of

Prof. Amr Abd Elwahab Reda Mabrouk

Professor of Plastic, Burn and Maxillofacial Surgery Faculty of Medicine, Ain Shams University

Dr. Tarek Salem Elmenoufy

Consultant of Plastic, Reconstructive and Burn Surgery Military Medical Academy

Dr. Riham Zakaria Lashin

Assistant Professor of Plastic, Burn and Maxillofacial Surgery Faculty of Medicine, Ain Shams University

Dr. Mohamed Samir Badawy

Lecturer of Plastic, Burn and Maxillofacial Surgery Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to MAN, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Amr Abd Elwahab Reda Mabrouk**, Professor of Plastic, Burn and Maxillofacial Surgery, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Tarek Salem Elmenoufy**, Consultant of Plastic, Reconstructive and Burn Surgery, Military Medical Academy, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Riham Zakaria**Lashin, Assistant Professor of Plastic, Burn and Maxillofacial

Surgery, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr. Mohamed Samir Badawy**, Lecturer of Plastic, Burn and Maxillofacial Surgery, Faculty of Medicine, Ain Shams University, for his kindness, supervision and cooperation in this work.

Mohamed Reda

The Versatility of Usage of Hydrosurgical Debridement in Major Burns

ABSTRACT

Background: Burn wound debridement is an important step in management of major burns. There are several techniques of burn wound debridement include surgical, enzymatic, mechanical and autolytic. Hydrosurgical system is an additional type of debridement that preserve viable tissues, create smooth wound bed and decrease bacterial load.

Objective: This study compared the hydrosurgical debridement and traditional surgical methods of debridement of major burns. *Patients and Methods:* This study is a prospective and comparative that compared traditional surgical debridement versus hydrosurgical debridement of major burns. This study was conducted between December 2020 to December 2021 at 2 major burn centers in Egypt (Burn unit of Ain Shams University hospital and Armed Forces Burn Center at El Helmia Armed Forces Hospital).

Twenty patients with mixed depth of major burns were divided into two groups. In group I (n=10) debridement done surgically by Watson knife. In group II (n=10) debridement done by hydrosurgical system. Both groups were compared regarding intraoperative blood loos, blood component transfusion, mean number of sessions, mean duration of each session, healing time, risk of infection and Vancover scar scale.

Results: The current study showed that, the estimated blood loss, healing time, blood component transfusion and risk of infection were lower in group II than group I.

Keywords: VERSAJET®, burn debridement, burn excision, wound bed.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	2
Review of Literature	
Pathophysiology Of Burns	3
Management of Burns	23
Hydrosurgery Debridement	33
Patients and Methods	41
Results	63
Discussion	88
Summary	94
Conclusion	96
References	97
Arabic Summary	

List of Abbreviations

Abb. Full term
ACS Abdominal compartment syndrome
AKI Acute kidney injury
ALT Alanine aminotransferase
AST Aspartate aminotransferase
ATLS Advanced Trauma Life Support
BSA Body surface area
CBC Complete blood count
CNS Central nervous system
CT Computed tomography
ECG Electrocardiography
GIT Gastrointestinal tract
Hb Hemoglobin
IAH Intraabdominal hypertension
IL-6Interleukin-6
IQR Inter-quartile range
IV Intravenous
MC Mast cells
MDA Malondialdehyde
MIF Migration inhibitor factor
MRI Magnetic resonance imaging
NF-κB Nuclear factor κB
NO Nitric oxide
ROS Reactive oxygen species
SBI Severe burn injury

List of Abbreviations Cont...

Abb.	Full term
SIRS	Systemic inflammatory response syndrome
	Split-thickness skin graft
TBSA	Total body surface area
TGF	Transforming growth factor
Th-2	T helper 2
TNF-α	Tumor necrosis factor- α
VAT	Value-added tax
WBC	White Blood Cells
WHO	World Health Organization

List of Tables

Table No.	Title	Page No.
Table (1):	American Burn Association classification	v
Table (2):	Vancouver scar scale	61
Table (3):	Patient satisfaction scale	61
Table (4):	Demographic data for studied including age, sex, smoking, and re	-
Table (5):	Clinical data on admission for patients including mode of burn, s inhalational injury, extent, d burned area and mean HB	uspected epth of
Table (6):	Surgical intervention for studied including session 1, session 2, s and session 4	ession 3
Table (7):	Immediately post-operative destudied patients including Mean operative (gm/dl), need for component transfusion, incided Infection.	Hb post- Blood ence of
Table (8):	Late postoperative data for patients including Remaining Pethat required Grafting, Healin (days), Texture (regular or in Vancover scar score component total score	ercentage ng time regular), and its
Table (9):	Comparison between knife based debridement group (group hydrosurgical debridement group II) regarding demographic data	surgical I) and o (group

List of Tables Cont...

Table No.	Title	Page No.
Table (10):	Comparison between knife based debridement group (group hydrosurgical debridement grou II) regarding clinical data on admi	I) and p (group
Table (11):	Comparison between knife based debridement group (group hydrosurgical debridement grou II) regarding surgical intervention	I) and p (group
Table (12):	Comparison between group I and regarding number of patients session and mean number of sessi	in each
Table (13):	Comparison between knife based debridement group (group hydrosurgical debridement grout II) regarding immediate post data	I) and p (group coperative
Table (14):	Comparison between knife based debridement group (group hydrosurgical debridement grou II) regarding late postoperative da	I) and p (group

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	The Rule of Nines used in burn siz Jackson's burns zones and the eff adequate and inadequate resuscita	fects of
Figure (3): Figure (4): Figure (5):	Superficial partial-thickness burn Mixed partial-thickness burn Full-thickness burna small burn by contact with a hot motorcycle e pipe	24 caused xhaust
Figure (6):	Hydrosurgery system and debrid design VERSAJET II Hydrosurgery	lement 35
Figure (8):	Escharotomy of left forearm circumferential burn in emergency	room45
Figure (9): Figure (10):	Watson knife and its blade	B) Late pletely after Mixed limbs p after show d area
Figure (11):	VERSAJET® hydrosurgery device.	
Figure (12):	Debridement of the burn wound	in the AJET® of the
Figure (13):	Meshed grafts(1.5: 1)	54

List of Figures Cont...

Fig. No.	Title	Page	No.
Figure (14):	Mesher (1.5: 1)		54
Figure (15):	Grafts applied to the bed debridement and fixed by staplers.		55
Figure (16):	Partial thickness burn over the a trunk during debridement by Verintraoperatively hand piece of the was arrowed.	rsajet® device	55
Figure (17):	Debridement of burn in the neck chest by Versajet® device, A) Han of the device, B) adrenaline s gauze over the debrided are heamostasis.	d piece oacked ea for	56
Figure (18):	Mixed pattern burn in left upper before and after hydros debridement by Versajet®	urgical	56
Figure (19):	Mixed pattern burn in left lowe before and after hydros debridement by Versajet®	urgical	57
Figure (20):	Mixed pattern burn in abdomen a breast before and after hydros debridement by Versajet®	urgical	57
Figure (21):	A case of hydrosurgical debridem versajet® of mixed pattern burn it feet, A) Intraoperatively before s hydrosurgical debridement, B) dressing after debridement, C) follow up, complete healing of without grafting	in both tarting First During ccurred	58
Figure (22):	Sex distribution among the spatients	studied	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (23):	Residence of the studied patients.	64
Figure (24):	Mode of burn among studied patie	ents66
Figure (25):	Suspected inhalational injury studied patients	_
Figure (26):	Incidence of infection among patients	
Figure (27):	Texture among studied patients	71
Figure (28):	Comparison between group I and II regarding mean duration of s (min).	sessions
Figure (29):	Comparison between group I and II regarding mean estimated blo (ml) in each session	ood loss
Figure (30):	Comparison between group I and II regarding percentage of percentage blood component transfer each session.	patients usion in
Figure (31):	Comparison between group I and II regarding number of patients session and mean number of sessi	in each
Figure (32):	Comparison between group I and II regarding mean hem postoperatively (gm/dl)	oglobin
Figure (33):	Comparison between group I and II regarding percentage of preceiving blood component transpostoperatively	patients esfusion
Figure (34):	Comparison between group I and II regarding percentage of patien infection postoperatively.	d group ts with

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (35):	Comparison between group I and gregarding remaining percentage grant	_
Figure (36):	Comparison between group I and II regarding healing time (days)	-
Figure (37):	Comparison between group I and II regarding texture	
Figure (38):	Comparison between group I and II regarding patient satisfaction	-
Figure (39):	Comparison between group I and II regarding scar vascularity	· -
Figure (40):	Comparison between group I and II regarding scar pigmentation	
Figure (41):	Comparison between group I and II regarding scar pliability	· -
Figure (42):	Comparison between group I and II regarding scar height (mm)	
Figure (43):	Comparison between group I and II regarding total Vancover scar so	· .

Introduction

Burn injuries are the fourth most common traumatic injury and cause an estimated 265000 deaths worldwide (*Bailey et al.*, 2019).

Management of burn patients includes several steps starting from the incidence of injury and may be lasting for years. Wound debridement is an initial step in burn management (*Ziegler et al.*, 2020).

It can be made by different methods like enzymatic, autolytic, mechanical, biological and osmotic debridement (*Legemate et al.*, 2018). It aims to remove the necrotic tissue, reduce the bacterial load, and convert the burn to acute wound that can accept skin graft (*Edmondson et al.*, 2018).

However, this procedure can be painful and nonselective because it may remove healthy tissue. So, hydrosurgical debridement is an innovative tool based on jet of water and on the Venturi effect resulting from it, which is capable of removing the necrotic tissue by suction (*Barret*, 2006). Moreover, it is a more selective and less painful procedure with shorter healing time, better tissue contouring and less intraoperative bleeding (*Legemate et al.*, 2018).