

### بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

| NA  |         | T R             | ملاحظات:   |
|-----|---------|-----------------|------------|
| 4 1 | 6997    |                 |            |
|     | AIMSWAM | R. MININERRINA. |            |
| 1   | 5/15/20 | 1992            | - 1 3 m. f |

بمكات وتكنولوجبارته



### Characteristics of Women Admitted to Obstetric ICU for Microangiopathic Hemolytic Anemia Variants (MAHA) A 5 year retrospective review

#### Thesis

Submitted for Partial Fulfilment of Master degree in Obstetrics and Gynecology

By

#### Heba Abd El Karim Ahmed Zobaa

M.B.B.Ch - Faculty of Medicine, Alexandria University

Under supervision of

### **Prof. Shereif Mohamed Abdel Hameed**

Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

### Dr. Noha Abd El-Sattar Afify Sakna

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

#### Dr. Mohamed Hamed Abdel-Aziz Salama

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2021



سورة البقرة الآية: ٣٢

# Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Shereif Mohamed Abdel Hameed,** Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Moha Abd El-Sattar Afify Sakna,**Assistant Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mohamed Hamed**Abdel-Aziz Salama, Assistant Professor of Obstetrics &

Gynecology Faculty of Medicine – Ain Shams University, for her great help, active participation and guidance.

Heba Abd El Karim

## List of Contents

| Title                             | Page No. |
|-----------------------------------|----------|
| List of Tables                    |          |
| List of Figures                   | iii      |
| List of Abbreviations             | v        |
| Introduction                      | 1        |
| Aim of the Work                   | 6        |
| Review of Literature              |          |
| Obstetric ICU Admissions          | 7        |
| Microangiopathic Hemolytic Anemia | 18       |
| Patients and Methods              | 82       |
| Results                           | 85       |
| Discussion                        | 123      |
| Summary                           | 132      |
| Conclusion                        | 135      |
| References                        | 136      |
| Arabic Summary                    |          |

# List of Tables

| Table No.          | Title                                                                             | Page No. |
|--------------------|-----------------------------------------------------------------------------------|----------|
| Table (1):         | Differential diagnosis of thromboc<br>and microangiopathic haemolytic an          | ~ -      |
| <b>Table (2):</b>  | Comparison of frequency of symptoms, and laboratory findings HUS, HELLP, and AFLP | in TTP,  |
| <b>Table (3):</b>  | Demographic data                                                                  | 86       |
| <b>Table (4):</b>  | Obstetric history.                                                                | 86       |
| <b>Table (5):</b>  | Prevalence of relevant medical dis<br>the whole study population                  |          |
| <b>Table (6):</b>  | Obstetric complications                                                           | 88       |
| <b>Table (7):</b>  | Mode of delivery:                                                                 | 89       |
| <b>Table (8):</b>  | ICU data.                                                                         | 90       |
| <b>Table (9):</b>  | Lab investigations                                                                | 91       |
| <b>Table (10):</b> | Final diagnosis and maternal outcom                                               | ne: 93   |
| <b>Table (11):</b> | Neonatal outcome.                                                                 | 95       |
| <b>Table (12):</b> | IUFD cases.                                                                       | 96       |
| <b>Table (13):</b> | Demographic data                                                                  | 97       |
| <b>Table (14):</b> | Obstetric history                                                                 | 99       |
| <b>Table (15):</b> | Medical history                                                                   | 101      |
| <b>Table (16):</b> | Obstetric complications                                                           | 103      |
| <b>Table (17):</b> | Mode of delivery                                                                  | 104      |
| <b>Table (18):</b> | Neonatal outcome.                                                                 | 106      |
| <b>Table (19):</b> | ICU data                                                                          | 109      |
| <b>Table (20):</b> | Haemoglobin and INR                                                               | 112      |
| <b>Table (21):</b> | Platelet                                                                          | 114      |
| <b>Table (22):</b> | Shows comparison between study regard kidney function tests                       |          |

# List of Tables Cont...

| Table No.          | Title                                                                        | Page No. |
|--------------------|------------------------------------------------------------------------------|----------|
| Table (24):        | Comparison between study cases liver function tests.                         | •        |
| <b>Table (25):</b> | Comparison between SPET an regarding liver enzymes:                          |          |
| Table (26):        | Shows comparison between sturegarding duration of ICU s<br>maternal outcome: | tay and  |
| <b>Table (27):</b> | Shows correlation between clinical poor outcome:                             |          |
| <b>Table (28):</b> | Showing correlation between l finding and poor outcome                       | v        |

# List of Figures

| Fig. No.            | Title                                                                                  | Page   | No. |
|---------------------|----------------------------------------------------------------------------------------|--------|-----|
| Figure (1):         | Pregnant/postartum women<br>MAHA, Thrombocytopenia                                     |        | 21  |
| Figure (2):         | Data collection Flow chart                                                             |        | 85  |
| Figure (3):         | Prevalence of relevant medical distinction in the study population                     |        | 88  |
| Figure (4):         | Mode of delivery                                                                       |        | 89  |
| Figure (5):         | Albumin in urine at the tin                                                            |        |     |
| Figure (6):         | Final diagnosis                                                                        |        |     |
| Figure (7):         | Comparison between study regarding age                                                 | cases  |     |
| Figure (8):         | Comparison between study regarding parity                                              |        | 100 |
| Figure (9):         | Comparison between study regarding different medical cond found among study population | itions | 102 |
| <b>Figure</b> (10): | Comparison between study regarding gestational age                                     |        | 102 |
| <b>Figure (11):</b> | Comparison between study regarding mode of delivery                                    | cases  |     |
| <b>Figure (12):</b> | Comparison between study regarding neonatal weight                                     |        | 108 |
| <b>Figure (13):</b> | Comparison between study regarding gestational age                                     |        | 108 |
| <b>Figure (14):</b> | Comparison between study regarding ICU pulse and pressure.                             | blood  | 110 |
| <b>Figure (15):</b> | Comparison between study regarding urine output                                        | cases  |     |

# List of Figures Cont...

| Fig. No.            | Title                                                                | Page   | No. |
|---------------------|----------------------------------------------------------------------|--------|-----|
| Figure (16):        | Comparison between study regarding Galascow coma scale               |        | 111 |
| <b>Figure (17):</b> | Comparison between study regarding Hb level                          |        | 113 |
| <b>Figure (18):</b> | Comparison between study regarding INR.                              |        | 113 |
| Figure (19):        | Comparison between HELLP, HUTTP regarding PLT level lowest discharge | and at | 115 |
| Figure (20):        | Analysis of maternal mortality                                       |        | 120 |
| <b>Figure (21):</b> | Comparison between study regarding maternal outcome                  |        | 120 |

### List of Abbreviations

| Abb.     | Full term                                                                         |
|----------|-----------------------------------------------------------------------------------|
| ACOG     | . American College of Obstetricians and<br>Gynecologists                          |
| ADAMTS13 | . A disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 |
| AFE      | . Amniotic fluid embolism                                                         |
| AFLP     | . Acute fatty liver of pregnancy                                                  |
| ALT      | . Alanine aminotransferase                                                        |
| APS      | . Antiphospholipid syndrome                                                       |
| AST      | . Aspartate aminotransferase                                                      |
| BP       | . Blood pressure                                                                  |
| CFH      | . Complement factor H                                                             |
| CPR      | . Cardiopulmonary resuscitation                                                   |
| CT       | . Computed tomography                                                             |
| C-TMA    | . Complement-mediated thrombotic microangiopathy                                  |
| DGKE     | . Diacylglycerol kinase epsilon                                                   |
| DIC      | . Disseminated intravascular coagulation                                          |
| DM       | . Diabetes mellitus                                                               |
| GFR      | . Glomerular filtration rate                                                      |
| HELLP    | . Haemolysis, elevated liver enzymes and low platelets                            |
| HTN      | . Hypertension                                                                    |
| HUS      | . Hemolytic uremic syndrome                                                       |
| ICU      | . Intensive care unit                                                             |
| IVIG     | . Intravenous immune globulin                                                     |
| LDH      | . Lactate dehydrogenase                                                           |
| MAHA     | . Microangiopathic Hemolytic Anemia                                               |
| MELD     | . Model for End-stage Liver Disease                                               |

## List of Abbreviations Con...

| Abb.   | Full term                              |
|--------|----------------------------------------|
| MDI    | Managhia managhan si manain m          |
|        | Magnetic resonance imaging             |
| PET    | Pre-eclamptic toxaemia                 |
| PEX    | Plasma exchange                        |
| SPET   | Severe preeclampsia                    |
| STEC   | Shiga toxin-producing Escherichia coli |
| ST-HUS | Shiga toxin-mediated hemolytic uremic  |
|        | syndrome                               |
| TMA    | Thrombotic microangiopathies           |
| TTE    | Transthoracic echocardiography         |
| TTP    | Thrombotic thrombocytopenic purpura    |

### Introduction

Microangiopathic Hemolytic Anemia (MAHA) refers to anemia caused by destruction of erythrocytes due to physical shearing as a result of passage through small vessels occluded by systemic microthrombi. MAHAs are characteristically accompanied by thrombocytopenia in the absence of defects in coagulation (*Moake et al., 2002*).

Thrombotic microangiopathies (TMA) are a group of related disorders that are characterized by thrombosis of the microvasculature and associated organ dysfunction, and encompass congenital, acquired, and infectious etiologies. A hallmark of these disorders is the fragmentation of erythrocytes by the microvascular thrombi, resulting in a nonimmune microangiopathic hemolytic anemia (MAHA) (*Moake et al.*, 2002; George et al., 2014).

These are acute conditions with significant morbidity and mortality. However, in pregnancy, differentiation from other TMAs, some of which are specific to this period, may be very difficult. The primary diagnostic challenge is the differentiation from acute fatty liver of pregnancy (AFLP), preeclampsia (Pre-eclamptic toxaemia, PET) or eclampsia and HELLP (haemolysis, elevated liver enzymes, low platelets). Features of PET and HELLP may be the initial presentation prior to the clinical picture evolving and subsequent diagnosis of TTP or HUS, thus further complicating the diagnostic process.



Antiphospholipid syndrome (APS), systemic lupus erythematosus and disseminated intravascular coagulation (DIC) may also present with a microangiopathic haemolytic anaemia picture association (MAHA) in with thrombocytopenia, (Scully et al., 2012) but will not be dealt with in this review.

| Conditions                                                        | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preeclampsia                                                      | PET is a multisystem disorder resulting from endothelial damage ( <i>Mol et al.</i> , <i>2016</i> ), defined as new-onset hypertension [blood pressure (BP) ≥140 mmHg systolic and/or ≥90 mmHg diastolic, based on at least two measurements taken at least 4 h apart] occurring in a pregnant woman after 20 weeks gestation, with proteinuria (defined as urinary excretion of ≥03 g protein in 24 h) ( <i>NICE</i> , <i>2010</i> ).  PET is classified as mild (BP 140–149 mmHg systolic and/or 90–99 mmHg diastolic), moderate (BP 150–159 mmHg systolic and/or 100–109 mmHg diastolic) or severe (BP ≥160 mmHg systolic and/or ≥110 mmHg diastolic) ( <i>NICE</i> , <i>2010</i> ). |
| HELLP (haemolysis, elevated liver enzymes and low platelet count) | Haemolysis, elevated liver enzymes and low platelets (HELLP) is a thrombotic microangiopathy, histologically associated with endothelial cell injury, fibrin deposition, platelet activation and consumption, and areas of hepatic haemorrhage and necrosis ( <i>Barton et al.</i> , 1992).                                                                                                                                                                                                                                                                                                                                                                                             |
| HUS                                                               | Hemolytic uremic syndrome (HUS) is a rare and severe form of thrombotic microangiopathy associated with a poor renal prognosis. It is characterized by the association of mechanical hemolytic anemia, thrombocytopenia, and kidney failure ( <i>Noris &amp; Remuzzi, 2009</i> ).                                                                                                                                                                                                                                                                                                                                                                                                       |
| AFLP                                                              | This is a rare life-threatening illness (incidence approximately 5 per 100 000 deliveries) associated with significant maternal and perinatal mortality ( <i>Knight</i> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



| Conditions | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 2008). It typically presents in the third trimester, although it has been rarely described in the first and second trimesters. Acute fatty liver of pregnancy (AFLP) usually affects primigravid women, although there are reports of recurrence in subsequent pregnancies. Presentation is non-specific with headache, fatigue, nausea, vomiting (70%), and right upper quadrant or epigastric pain (50%). Progression of the illness is often rapid and, early in the presentation, there may be gastrointestinal haemorrhage, coagulation abnormalities, acute kidney injury, infection, pancreatitis, and hypoglycaemia. Later in the disease process, liver failure and encephalopathy may occur (Hay, 2008).                                                                                                              |
| TTP        | Thrombotic thrombocytopenic purpura (TTP) is an acute life-threatening disorder associated with thrombocytopenia, MAHA and symptoms related to microvascular thrombosis.  Clinically, in addition to a low platelet count (below150x 10 <sup>9</sup> /l, but more usually less than 50x10 <sup>9</sup> /l), patients are anaemic secondary to fragmentation-haemolysis with an associated acute consumption of folate. Corresponding blood film changes include polychromasia, anaemia, thrombocytopenia and fragmented red blood cells. Bilirubin is often raised, but the direct antiglobulin test is negative and the coagulation screen is normal. Lactate dehydrogenase (LDH) is increased, often out of proportion to the degree of haemolysis, due to associated tissue ischemia ( <i>Scully et al.</i> , <i>2012</i> ). |

Although these syndromes have similar pathologic features of TMA and similar clinical features, they are distinct entities with distinct etiologies and pathogenesis. The etiology of preeclampsia is not well understood. It may be related to abnormal placental function causing increased resistance to



placental blood flow, which may be related to the systemic hypertension (George et al., 2014).

TTP is a systemic disorder of microvascular thrombosis related to severe deficiency of ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13), most commonly an acquired autoimmune disorder. TTP can also be hereditary, caused by homozygous or compound heterozygous ADAMTS13 mutations (George et al., 2014).

HUS is a disorder of dysregulation of the alternative complement pathway, most commonly hereditary with heterozygous mutations of genes encoding complement regulatory proteins. It may also be acquired with antibodies to complement factor H, the major regulatory protein of the alternative complement pathway (George et al., 2014).

An important issue for the evaluation of a pregnant or postpartum woman with severe MAHA and thrombocytopenia is to appreciate the relative incidence of PE/HELLP syndrome, TTP, HUS, and AFLP. PE/HELLP syndrome is much more common than either TTP or HUS (George et al., 2014).

The clinical picture may give clues to the underlying diagnosis. Abdominal pain is common in PET/HELLP and AFLP, but may also be seen in TTP due to intestinal ischaemia (Scully et al., 2012).