

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / هناء محمد علي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

		4534		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(m) (m)		00	ملاحظات:
		حامعتب		
	since	1992	1.53	

بركات وتكنولوجياراه

Faculty of Pharmacy Clinical Pharmacy Department

Effect of Black Seed Oil on Markers of Endothelial Dysfunction in Patients with Type 2 Diabetes Mellitus

A Thesis submitted for the fulfillment of the Doctor of Philosophy in Pharmaceutical Sciences (Clinical Pharmacy)

Submitted By

Amany Talaat Abdel Latif Ebrahim El-Garf

Assistant Lecturer of Clinical Pharmacy Clinical Pharmacy Department Faculty of Pharmacy-Ain Shams University

Under supervision of:

Prof. Dr. Nagwa Ali Sabri

Professor of Clinical Pharmacy Clinical Pharmacy Department Faculty of Pharmacy-Ain Shams University

Prof. Dr. Maram Mohamed Maher Mahdy

Professor of Internal Medicine and Endocrinology Internal Medicine and Endocrinology Department Faculty of Medicine-Ain Shams University

Assoc.Prof.Dr. Sara Mahmoud Zaki

Associate professor of Clinical Pharmacy Clinical Pharmacy Department Faculty of Pharmacy-Ain Shams University

Acknowledgements

I am deeply thankful to "Allah" by the grace of whom, this work was possible.

I would like to express my deep appreciation to Dr. Nagwa Ali Sabri, Professor of Clinical Pharmacy— Faculty of Pharmacy— Ain Shams University, for her sincere help, close supervision, valuable guidance and continuous support in completing this work.

I am very grateful to Dr. Maram Mohamed Maher Mahdy, Professor of Internal Medicine and Endocrinology – Faculty of Medicine - Ain Shams University, for her precious advice and valuable guidance in completing this work.

I am very grateful to Dr. Sara Mahmoud Shaheen, Associate Professor of Clinical Pharmacy– Faculty of Pharmacy- Ain Shams University, for her close supervision, great assistance, precious advice and valuable guidance in completing this work.

I would like to thank all members of Clinical Pharmacy Department, Faculty of Pharmacy- Ain Shams University, for their support and continuous encouragement.

Many special thanks and deep gratitude for my parents, family, my dear husband and my beloved Kids (Lara and Hania), to whom I am greatly indebted for their love and spiritual support throughout my life.

Table of contents

Contents	Page
List of abbreviations	i
List of tables	iv
List of figures	vi
Abstract	viii
Introduction	1
Review of literature	4
Diabetes Mellitus	
I. Definition and classification of diabetes mellitus	5
II. Risk factors of type 2 diabetes mellitus	6
III. Pathogenesis of type 2 diabetes mellitus	7
IV. Epidemiology	9
V. Clinical presentation of type 2 diabetes mellitus	11
VI. Diagnosis of type 2 diabetes mellitus	11
VII. Treatment of type 2 diabetes mellitus	12
VIII. Acute complications of type 2 diabetes mellitus	19
IX. Vascular complications in diabetes mellitus	21
Endothelial dysfunction	26
Nigella Sativa	36
Role of clinical pharmacist in diabetes management	50
Aim of work	55
Patients and methods	57
Results	69
Discussion	114
Conclusion	121
Limitations	123
Recommendations	125
Summary	127
References	131
Appendix	167
Arabic summary	189

List of abbreviations

ACCP	American College of Clinical Pharmacy
ADA	American diabetes association
ADMA	Asymmetrical dimethylarginine
AGE	Advanced glycation end product
AGIs	Alpha-glucosidase inhibitors
AGP	α1-acid glycoprotein
ALT	Alanine aminotransferase
ASCVD	Atherosclerotic cardiovascular disease
AST	Aspartate aminotransferase
BMI	Body mass index
BSA	Bovine serum albumin
BUN	Blood urea nitrogen
CAMs	Cell adhesion molecules
cGMP	Cyclic guanosine monophosphat
CHD	Coronary heart disease
CI	Confidence interval
COVID-19	Coronavirus disease of 2019
COX	Cyclooxygenase
CRP	C- reactive protein
CVD	Cardiovascular disease
DAN	Diabetic autonomic neuropathy
DDCT	Diabetes control and complications trial
DKA	Diabetic ketoacidosis
DKD	Diabetic kidney disease
DM	Diabetes mellitus
DME	Diabetic macular edema
DPN	Diabetic peripheral neuropathy
DPP-IV	Dipeptidyl peptidase – IV
D-39 Q	Diabetes -39 questionnaire
DR	Diabetic retinopathy
ED	Endothelial dysfunction
eGFR	Estimated glomerular filtration rate
ELISA	Enzyme linked immunosorbent assay
eNOS	endothelial nitric oxide synthase
ESRD	End-stage renal disease
ET-1	Endothelin-1
FBG	Fasting blood glucose

EDA	Es ed and Done Administration
FDA	Floor and Drug Administration
FMD	Flow-mediated vasodilatation
FPG	Fasting plasma glucose
GDM	Gestational diabetes mellitus
GI	Gastrointestinal
GIP	Glucose-dependent insulinotropic polypeptide
GLP	Glucagon-like peptide
GLP-1 RA	Glucagon-like peptide-1 receptor agonists
HbA1c	Glycated hemoglobin
HDL-C	High density lipoprotein cholesterol
HGP	Hepatic glucose production
HHS	Hyperglycemic hyperosmolar state
2-hPG	2-hour plasma glucose
HSA	Human serum albumin
hs-CRP	High sensitivity c-reactive protein
ICAM-1	Intercellular adhesion molecule-1
IDF	International diabetes federation
IgSF	Immunoglobulin superfamily
IL-6	Interleukin-6
IL-β	Interleukin-beta
ILs	Interleukins
IP	Intraperitoneal
IQR	Interquartile range
LD50	Median lethal dose
LDL-C	Low density lipoprotein cholesterol
MAPK	Mitogen activated protein kinase
MENA	Middle East region and North African region
MERS	Middle East respiratory syndrome
MI	Myocardial infarction
MODY	Maturity-onset diabetes of the young
NF-ĸB	Nuclear factor kappa-B
NIDDM	Noninsulin-dependent diabetes mellitus
NO	Nitric oxide
NS	Nigella Sativa
OGTT	Oral glucose tolerance test
OR	Odds ratio
PAI-1	Plasminogen activator inhibitor-1
PI3K	Phosphatidylinositol-3-kinase
PKC	Protein kinase-C
PPAR	Peroxisome proliferator-activated receptor
QOL	Quality of life
<u> </u>	ı

RCTs	Randomized controlled trials
ROS	Reactive oxygen species
SARS	Severe acute respiratory syndrome
SCr	Serum creatinine
SD	Standard deviation
SGLT-1	Sodium glucose co-transporter 1
SGLT-2	Sodium glucose co-transporter 2
sICAM-1	Soluble intercellular adhesion molecule-1
STZ	Streptozotocin
SU	Sulfonylureas
sVCAM	soluble vascular cell adhesion molecule
TC	Total cholesterol
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
TG	Triglycerides
THQ	Thymohydroquinone
TNF-α	Tumor necrosis factor-alpha
TQ	Thymoquinone
TZDs	Thiazolidinediones
VCAM-1	Vascular cell adhesion molecule-1
Vs	Volume at steady state
VWF	Von Willebrand factor
WHO	World Health Organization

List of tables

Table	Page
Table (1): Warning signs of diabetes.	11
Table (2): Diagnostic criteria of diabetes mellitus.	12
Table (3): Types of commercial kits used during the study.	60
Table (4): Baseline demographic data and clinical	72
characteristics of patients in the two study groups.	
Table (5): Body mass index at baseline and after three months	74
among the study groups.	
Table (6): Levels of glycated haemoglobin at baseline and	76
after three months among the study groups.	
Table (7): Fasting blood glucose levels at baseline and after	78
three months among the two study groups.	
Table (8): Lipid profile parameters at baseline and after three	80
months among the study groups.	
Table (9): Blood urea nitrogen levels at baseline and after	85
three months among the two study groups.	
Table (10): Serum creatinine levels at baseline and after three	86
months among the study groups.	
Table (11): Serum aspartate aminotransferase levels at	87
baseline and after three months among the study groups.	
Table (12): Serum alanine aminotransferase levels at baseline	88
and after three months among the study groups.	
Table (13): Baseline readings for high sensitivity C-reactive	89
protein between diabetic group and healthy group.	
Table (14): High sensitivity c-reactive protein levels at	91
baseline and after three months among the study groups.	
Table (15): Baseline readings for soluble intercellular	93
adhesion molecule-1 between diabetic group and healthy	
group.	
Table (16): Soluble intercellular adhesion molecule-1 levels at	95
baseline and after three months among the study groups.	
Table (17): Energy and mobility domain scores at baseline	98
and after three months among the study groups.	
Table (18): Diabetes control domain scores at baseline and	99
after three months among the study groups.	
Table (19): Anxiety and worry domain scores at baseline and	101
after three months among the study groups.	
Table (20): Social burden domain scores at baseline and after	102
three months among the study groups.	
Table (21): Sexual functioning domain scores at baseline and	103

after three months among the study groups.	
Table (22): Adverse events/effects recorded during the study	
period for the study groups.	
Table (23): Correlation between soluble intercellular adhesion molecule-1 levels and different laboratory parameters.	106

List of figures

Figure	Page
Figure (1): Interaction of genes and environmental factors that	7
results in development of obesity and associated type 2	
diabetes.	
Figure (2): Players in the pathophysiology of T2DM.	9
Figure (3): The varying estimated prevalence of T2DM.	10
Figure (4): Overview of diabetes cardiovascular complications	21
and their related trends.	
Figure (5): Pathophysiological events leading to vascular	28
complications in T2DM patients.	
Figure (6): Hyperglycemia and endothelial dysfunction	29
Figure (7): Schematic representation of the perfused forearm	30
technique to evaluate endothelial function in human	
peripheral microcirculation	
Figure (8): Chemical structure of the active ingredients of oil	38
of Nigella sativa L. seeds.	
Figure (9): Schematic description for the effects of Nigella	41
sativa in different parts of the human body.	
Figure (10): Proposed mechanisms for anti-diabetic activity of	43
Nigella sativa.	
Figure (11): Ameliorative effects of Nigella sativa on	44
dyslipidemia.	
Figure (12): Different molecular targets of Nigella sativa and	46
thymoquinone in inflammatory and oxidative stress diseases.	
Figure (13): Serial dilution of soluble intercellular adhesion	64
molecule-1 standard solutions.	
Figure (14): Flow chart describing the study according to	71
CONSORT guidelines.	
Figure (15): Box plot representing the body mass index at	75
baseline and after three months for the study groups.	
Figure (16): Box plot representing the levels of glycated	77
hemoglobin at baseline and after three months for the study	
groups.	
Figure (17): Box plot showing the baseline and after three	79
months fasting blood glucose levels for the study groups.	
Figure (18): Histogram representing the lipid profile values at	82
baseline and after three months for control group.	
Figure (19): Histogram showing the lipid profile values at	83
baseline and after three months for intervention group.	
Figure (20): Box plot representing the levels of high sensitivity	90
C-reactive protein at baseline for diabetic group and healthy	

group.	
Figure (21): Box plot showing the levels of high sensitivity c-	92
reactive protein at baseline and after three months for the	
study groups.	
Figure (22): Box plot representing the levels of soluble	94
intercellular adhesion molecule-1 at baseline for diabetic	
group and healthy group.	
Figure (23): Box plot showing the levels of soluble intercellular	96
adhesion molecule-1 at baseline and after 3 months for the	
study groups.	
Figure (24): Diabetes control domain scores for the study	100
groups at baseline and after three months.	
Figure (25): Frequency of adverse events among the study	105
groups.	
Figure (26): Positive correlation between soluble intercellular	107
adhesion molecule-1 and fasting blood glucose levels in all	
diabetic patients after three months.	
Figure (27): Positive correlation between soluble intercellular	108
adhesion molecule-1 and glycated hemoglobin levels in all	
diabetic patients after three months.	
Figure (28): Positive correlation between soluble intercellular	109
adhesion molecule-1 and total cholesterol levels in all diabetic	
patients after three months.	
Figure (29): Positive correlation between soluble intercellular	110
adhesion molecule-1 and triglycerides levels in all diabetic	
patients after three months.	
Figure (30): Positive correlation between soluble intercellular	111
adhesion molecule-1 and low density lipoprotein cholesterol	
levels in all diabetic patients after three months.	115
Figure (31): Negative correlation between soluble intercellular	112
adhesion molecule-1 and high density lipoprotein cholesterol	
level in all diabetic patients after three months.	445
Figure (32): Positive correlation between soluble intercellular	113
adhesion molecule-1 and high sensitivity c-reactive protein	
levels in all diabetic patients after three months.	

Abstract

Abstract

Background and objectives:

Endothelial dysfunction is a major contributing factor for the development of diabetic vascular complications. Atherosclerotic diseases and cardiovascular mortality can be early predicted by monitoring of biochemical markers such as intercellular adhesion molecule -1 (ICAM-1) which proved to have a good correlation with cardiovascular risk factors. Additionally, C-reactive protein (CRP) is a strong and independent predictor for adverse cardiovascular events. Black seed oil is known with its antioxidant, anti-inflammatory and hypoglycemic properties that make it an attractive candidate for improving endothelial dysfunction and quality of life of type 2 diabetic patients.

Aim of work:

The current study was designed to evaluate the effect of black seed oil as an add on therapy in the management of type 2 diabetes, endothelial dysfunction as well as patients' quality of life compared to standard treatment alone.

Patients and methods:

The study was a prospective, randomized, placebo-controlled, double blinded study that was carried out on 50 type 2 diabetic patients. Eligible patients were randomly assigned to receive either 1800 mg/day of black seed oil or identical placebo capsules for 12 weeks. Full clinical history and fasting blood samples were obtained to determine fasting blood glucose (FBG), glycated hemoglobin (HbA1c), full lipid profile, kidney and liver functions, high sensitivity c-reactive protein (hs-CRP) levels as well as ICAM-1 at baseline and at the end of the study. Moreover, quality of life was evaluated using diabetes-39 questionnaire.

Results:

Black seed oil supplementation at a dose of 1800 mg every day for a period of 3 months decreased the levels of HbA1c, TC (total cholesterol), TG (triglycerides), hs-CRP and ICAM-1 significantly compared to standard treatment alone. Regarding the other biochemical parameters, including FBG, HDL (high density lipoprotein), LDL (low density lipoprotein), AST (aspartate aminotransferase), ALT (alanine aminotransferase), BUN (blood urea nitrogen) and sCr (serum creatinine), black seed oil was comparable to standard treatment. All quality of life domains were not significantly changed by the end of the study period, except for diabetes control domain.

Conclusion:

The findings from the current study support the role of black seed oil in the management of type 2 diabetes and its related complications. Administration of 1800 mg/day of black seed oil over 12 weeks showed a superior efficacy over standard

treatment alone in the management of glycemic and metabolic parameters of type 2 diabetes mellitus and amelioration of endothelial dysfunction.

Key words:

Type 2 diabetes mellitus, Black seed oil, Endothelial dysfunction, Soluble adhesion molecules.

Introduction