سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

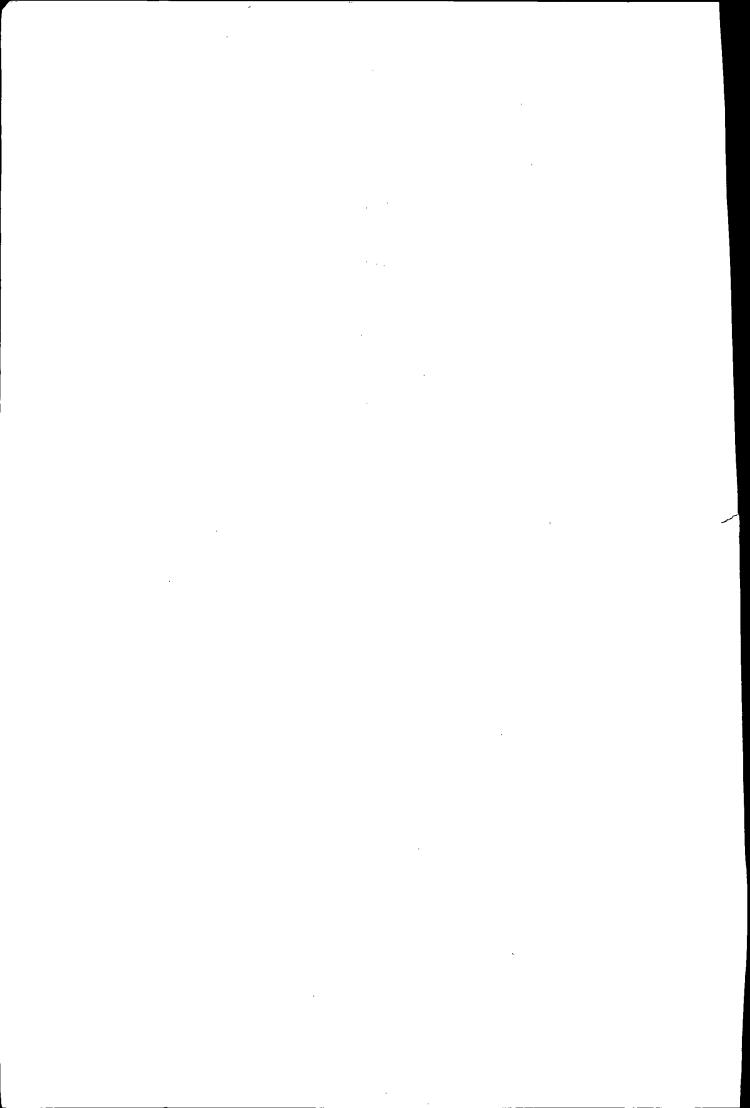
شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل


SIMULATION AND OPTIMIZATION OF ZEOLITE PRODUCTION SCHEMES FOR WATER TREATMENT

BY

HEBA AHMED HANI ALI ABDO

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

FACULTY OF ENGINEERING; CAIRO UNIVERSITY GIZA, EGYPT April 2004

SIMULATION AND OPTIMIZATION OF ZEOLITE PRODUCTION SCHEMES FOR WATER TREATMENT

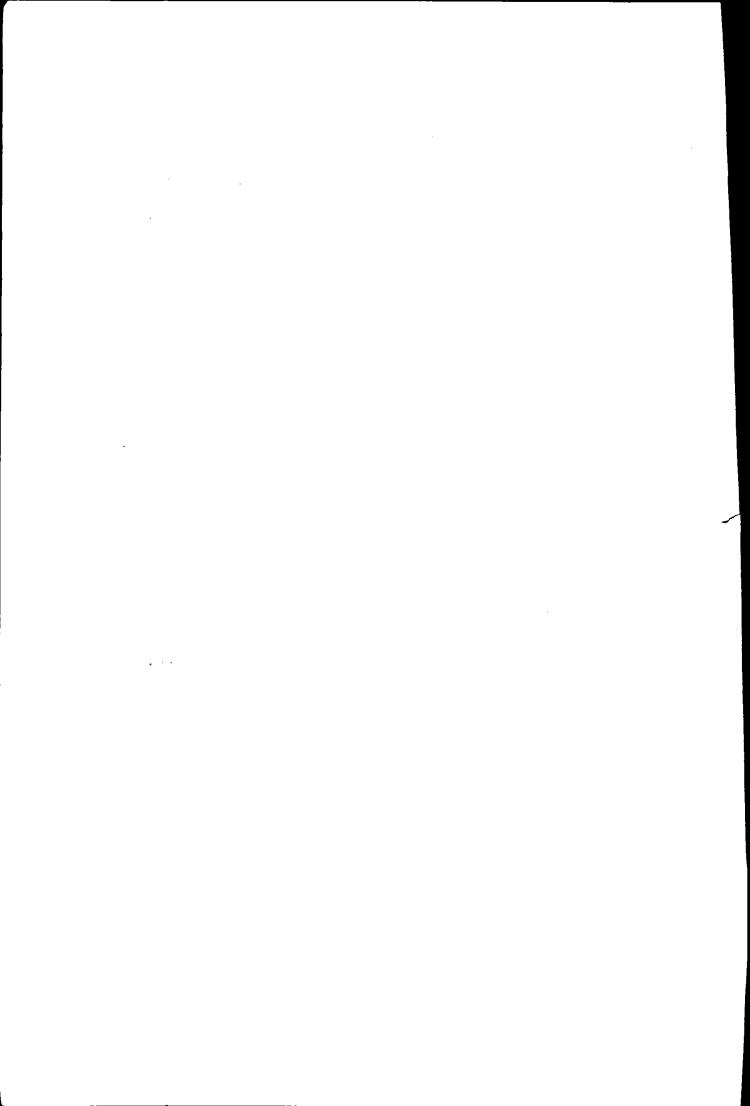
BY

HEBA AHMED HANI ALI ABDO

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

Under the Supervision of

PROF. DR. / MOHAMED FAHMY MOUSTAFA FAHMY


Chemical Engineering Department Faculty of Engineering Cairo University

Fahmy

PROF. DR. / SHADIA RAGHEB TEWFIK

Chemical Engineering and Pilot
Plant Department
Engineering Research Division
National Research Center, Cairo

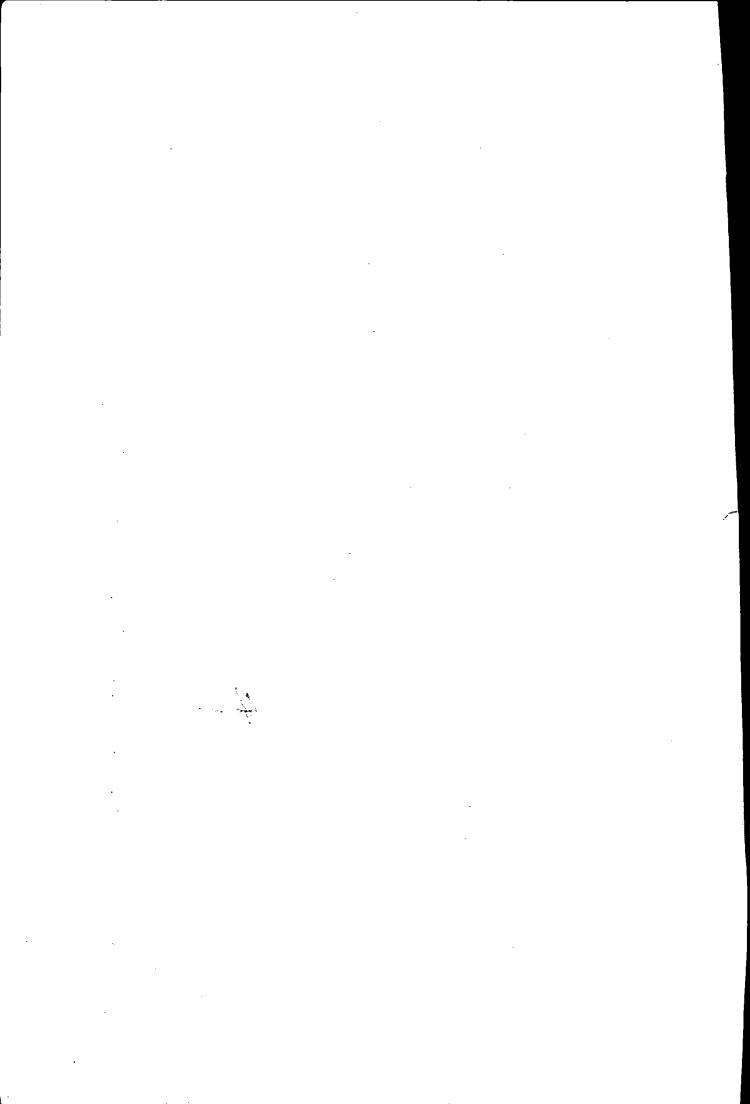
FACULTY OF ENGINEERING; CAIRO UNIVERSITY
GIZA, EGYPT
April 2004

SIMULATION AND OPTIMIZATION OF ZEOLITE PRODUCTION SCHEMES FOR WATER TREATMENT

BY

HEBA AHMED HANI ALI ABDO

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

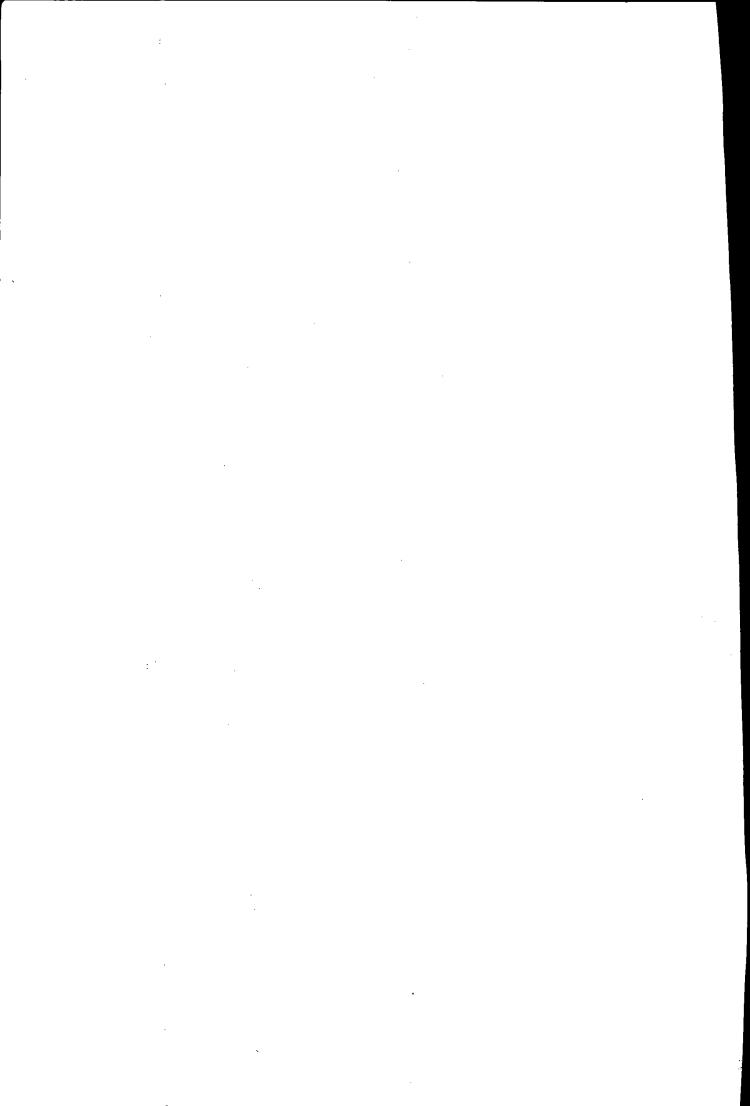

Approved by the **Examining Committee**

Prof. Dr. / Mohamed Fahmy Moustafa Fahmy, Thesis Main Supervisor

Prof. Dr. / Hamdy Abd El-Aziz Moustafa, Member

Prof. Dr. / Abd El-Ghani Gamal Abulnour, Member

FACULTY OF ENGINEERING; CAIRO UNIVERSITY GIZA, EGYPT April 2004



CONTENTS

LIST OF TAE	RI FC	Page
DIST OF THE		V.
LIST OF FIGURES ACKNOWLEDGEMENT		vii. ix.
CHAPTER 1	INTRODUCTION	1
CHAPTER 2	LITERATURE SURVEY	3
2.1 Zeolite		3
	2.1.1 Introduction	3
	2.1.2 Kinds of Zeolites	5
	2.1.3 Types of zeolites	6
	2.1.4 General Characteristics	6
	2.1.5 Applications of Zeolites	7
	2.1.6 Zeolite Market	10
	2.1.7 General Considerations for Zeolite	12
	Synthesis/ Production	
	2.1.8 Manufacturing Processes	15
	2.1.9 Zeolite A	18
	2.1.10 Zeolite A Crystallization	21
	2.1.11 Survey of Recent	28
	Synthesis Trends	20
2 /	2 Simulation	38
۷.,	2.2.1 Introduction	38 39
	2.2.2 Process Simulation Systems	39 41
	2.2.3 Dynamic Simulation	42
	2.2.4 Computer-Aided Design	72
CHAPTER 3	APPROACH AND METHODOLOGY	50
CHAPTER 4	PROCESS SCHEMES FOR ZEOLITE A PRODUCTION	53
4.1 Introduction		53

4.2 Process Comprising Use of Pure Materials	53
(Case1)	53
4.2.1 Process Description 4.2.2 Schematic Process Flowsheet	58
	58
4.2.3 Preliminary Material Balance	36
4.3 Process Comprising Use of Natural	60
Materials (Case 2a)	
4.3.1 Process Description	60
4.3.2 Schematic Process Flowsheet	63
4.3.3 Preliminary Material Balance	65
4.4 Process Comprising Use of Natural	65
Materials Without Pretreatment (Case 2b)	
4.4.1 Process Description	65
4.4.2 Schematic Process Flowsheet	66
4.4.3 Preliminary Material Balance	66
CHAPTER 5 HYSYS SIMULATION	68
5.1 Introduction	68
5.2 Constrains	71
5.3 Simulation of Case 1	72
5.4 Simulation of Case 2a	74
5.5 Comments	75
CHAPTER 6 ENGINEERING DEVELOPMENT AND ECONOMIC APPRAISAL	76
6.1 Engineering Development	76
6.1.1 Equipment Sizing and Selection	76
6.1.2 Operating Requirements	78
6.2 Economic Appraisal	79
6.2.1 Equipment Cost	79
6.2.2 Capital Investments	82
6.2.3 Estimation of Total Production Cost	89
6.2.4 Revenues	91
6.2.5 Profitability	91

CHAPTER 7 RESULTS AND DISCUSSION	92
7.1 Preliminary Material Balance	92
7.2 HYSYS Simulation	96
7.2.1 Results of Case 1	96
7.2.2 Results of Case 2a	101
7.3 Engineering Development	109
7.3.1 Equipment Sizing and Selection	109
7.3.2 Operating Requirements	109
7.4 Economic Appraisal	109
7.4.1 Equipment Cost	109
7.4.2 Investment, Production Costs, and Profitability	
7.4.3 Sensitivity Analysis	130
7.4.4 Comparison of Optional Schemes	134
7.4.5 Optimum Production Capacity	134
CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS	
REFERENCES	
ANNEX 1	145
ANNEX 2	146
ANNEX 3	161

