Salwa Akl

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

-Call +600-2

Salwa Akl

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Salwa Akl

بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

SEISMIC BEHAVIOR OF LOW-TO-MODERATE RISE REINFORCED CONCRETE BUILDINGS

by

SAMEH ABD EL-AZIZ MAHMOUD

818 439

A Thesis Submitted to the

-₩

Faculty of Engineering, Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

IN

CIVIL ENGINEERING (STRUCTURES)

Under the Supervision of

Prof. Dr. Nabil A. B. Yehia

Dr. Akram M. A. Torkey

Professor of Concrete Structures

Associate Prof. of Structural Engineering

FACULTY OF ENGINEERING CAIRO UNIVERSITY, GIZA, EGYPT JUNE, 2002

SEISMIC BEHAVIOR OF LOW-TO-MODERATE RISE REINFORCED CONCRETE BUILDINGS

by
SAMEH ABD EL-AZIZ MAHMOUD

A Thesis Submitted to the
Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

IN

CIVIL ENGINEERING (STRUCTURES)

Approved by Examining Committee

Prof. Dr. Nabil A.B. Ychia	1/Lakie	Main Advisor	•
Dr. Akram M. Torkey	16	Advisor	_} One Voice
Prof. Dr. Mohamed N.E. Fay	red Nove 1=1	Member	_
Prof. Dr. Magdy E. Kasem	M	Member	_

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
JUNE, 2002

DEDICATED TO

My Dear Mother My Dear Wife and

My Daughter

TABLE OF CONTENTS

	Page
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF NOTATION	xx
ACKNOWLEDGMENT	xxiii
ABSTRACT	xxiv
CHAPTER 1 INTRODUCTION	1
I.) General	1
1.2 Objectives and Scope	2
1.3 Thesis Outlines	3
CHAPTER 2 LITERTURE SURVEY	5
2.1 Introduction	5
2.2 Behavior of R.C. Frame Structures	5
2.3 Behavior of Flat-Slab Structures	22
2.4 Behavior of Infilled Frame Structures	28
CHAPTER 3 SEISMIC BEHAVIOR OF R.C. BUILDING	
ELEMENTS	38
3.1 Introduction	38
3.2 Design Concept	38
3.2.1 Architectural and Structural Considerations	39

3.2.2 Drift Limitations	39
3,2.3 Separation of Structures	40
3.2.4 Ductility Requirements	40
3.2.4.1 Curvature Ductility	41
3.2.4.2 Rotation Ductility	4 2
3.2.4.3 Displacement Ductility	42
3.3 Features of Hysteretic Moment Rotation Relation	42
3.3.1 Primary Curve	43
3.3.2 Stiffness Degradation	43
3.3.3 Strength Decay	43
3.3.4 Pinching of Hysteresis Loops	47
3.3.5 Components of Hysteretic Response	47
3.3.5.1 Flexural Response	47
3.3.5:2 Shear Response	50
3.3.5.3 Bar Slip Deformation	50
3.4 Behavior of Basic Structural Elements Under	
Earthquake-Type loading	50
3.4.1 Columns	52
3.4.2 Beams	55
3.4.3 Beam-Column Connections	56
3.4.4 Structural Walls	59
3.4.4.1 Individual Walls	59
3.4.4.2 Coupled Walls	63
3.4.5 Slab-Column Connection	65
CHAPTR 4 BACKGROUND ON EARTHQUAKES,	
DYNAMIC ANALYSIS AND DESCRIPTION	
OF COMPUTER PROGRAM	71
4.1 Introduction	71
4.2 Background on Earthquakes	71
4.2.1 The Cause of Earthquakes	7;
4.2.2 Size of Earthquakes	72
4.2.3 Types of Seismic Waves in Earthquakes Shaking	72

4.2.4 Magnitude and Intensity of Earthquake	73
4.2.5 Characteristics of Earthquake Ground Motion	77
4.2.6 Evaluating Seismic Risk	79
4.2.7 Earthquake Response Spectra	81
4.3 Equations of Motion Under Ground Excitation	81
4.4 Hysteretic Models for Reinforced Concrete	87
4.4.1 Elastic Model	87
4.4.2 Elastic-Plastic Model	88
4.4.3 Bilinear Model	88
4.4.4 Degrading Stiffness Models	88
4.4.4.1 Clough Model	90
4.4.4.2 Takeda Model	90
4.5 Member Modeling	90
4.6 Nonlinear Structural Analysis Software	95
4.7 Description of Program Features	9 5
4.7.1 Structural Element Models	96
4.7.1.1 Fiber Model for General Structural Elements	96
4.7.1.2 Inelastic Three Parameter Park Model	97
4.7.2 Infill Panel Elements	100
4.7.3 Stiffness Formulation for General Structural Element	104
4.7.4 Nonlinear Dynamic Analysis	109
4.7.5 Damage Analysis	111
CHAPTER 5 ANALYTICAL STUDY	11 4
5.1 Introduction	114
5.2 Assumptions	114
5.3 Description of Considered Cases	117
5.3.1 Frame Structures	120
5.3.1.1 Stiffness and Strength of Columns	120
5.3.1.2 Stiffness and Strength of Beams	120
5.3.1.3 Stiffness and Strength of Columns and Beams	120
5.3.1.4 Properties of Reinforced Concrete	130
5.3.1.5 Number of Frame Bays	130

5.3.1.6 Ground Acceleration Level	130
5.3.2 Flat Slab Structures	
5.3.2.1 Stiffness and Strength of Columns	130
5.3.2.2 Flat Slab Reinforcement	131
5.3.2.3 Strength of Columns and Flat Slab	131
5.3.3 Infilled Frames	131
5.3.3.1 Strength of Infill	131
5.3.3.2 Stiffness of Frame	131
5,3,3,3 Strength of Frame	134
5.3.3.4 Stiffness and Strength of Frame	134
CHAPTER 6 ANALYTICAL RESULTS	135
6.1 Introduction	135
6.2 Frame Structures	135
6.2.1 Effect of the Investigated Parameters on the	
Frame Response	145
6.2.1.1 Variation of Column Stiffness & Strength	145
6.2.1.2 Variation of Beam Stiffness & Strength	152
6.2.1.3 Variation of Both Columns and Beams	
stiffness & Strength	156
6.2.1.4 Variation of Material Properties	156
6.2.1.5 Number of Bays	163
6.2.1.6 Effect of Ground Acceleration Level	163
6.2.2 Recommended Design of Low-to-Moderate	
Rise Frame Structures	166
6.3 Flat Slab Structures	178
6.3.1 Effect of Various Parameters in the Design of	
Flat Slab Structures Against Earthquakes	189
6.3.1.1 Variation of Column Stiffness and Strength	197
6.3.1.2 Variation of Flat Slab Reinforcement	197
6.3.1.3 Variation of both Column Stiffness	
& Strength and Flat Slab Reinforcement	197

6.3.2 Recommended Design of Low-to-Moderate	
Rise Flat slab Structures	205
6.4 Infilled Frame Structures	
6.4.1 Effect of Infill Strength	215
6.4.2 Effect of Stiffness and Strength of Frame	215
CHAPTER 7 SEISMIC BEHAVIOR OF EXISTING R.C.	
BUILDINGS	230
7.1 Introduction	230
7.2 Evaluation of Scismic Performance of Actual GLD	
Buildings	231
7.3 Typical New Buildings	236
7.3.1 Educational Building	236
7.3.2 Typical Residential Building in New Cities	24 0
7.4 Comparison between Code Provisions and	
Dynamic Analysis	
7.5 Determination of Structure Period	258
7.6 Proposed Modified Equivalent Static Approach	259
7.7 Application of the Modified Approach	262
CHAPTER 8 CONCLUSIONS & RECOMMENDATIONS	268
REFERENCES	273
APPENDIX (A) SUMMARY OF EQUIVALENT STATIC METHODS	284
APPENDIX (B) BASES OF CODES COMPARISONS & CONSIDERED	
COEFFICIENTS VALUES	301
APPENDIX (C) INPUT AND OUTPUT OF COMPUTER PROGRAM	305

LIST OF TABLES

		Page
Table 4.1	Summary of rough relationship between magnitude-	
	energy-epicentral acceleration, and between acceleration,	
	intensity and ground velocity	79
Table 4.2	Interpretation of overall damage index	113
Table 5.1	List of major historical earthquakes in Egypt	115
Table 5.2	Dimension and detailed for gravity load designed buildings	121
Table 5.3a	Variation of column depth	122
Table 5.3b	Variation of column reinforcement	122
Table 5.3c	Variation of both column depth and reinforcement	123
Table 5.3d	Variation of column moment of inertia	123
Table 5.4a	Variation of beam depth	124
Table 5.4b	Variation of beam reinforcement	125
Table 5.4c	Variation of both beam depth and reinforcement	126
Table 5.5a	Variation of depth for both columns and beams	127
Table 5.5b	Variation of reinforcement for both columns and beams	128
Table 5.5c	Variation of both depth and reinforcement for both	
	columns and beams	129
Table 5.6a	Variation of flat slab reinforcement	132
Table 5.6b	Variation of depth and reinforcement of columns and	
	flat slab reinforcement	133
Table 6.1	Dimensions and details of modified frames	177
Table 6.2	Dimensions and details of modified flat slab structures	207
Table 7.1a	Reinforcement of beams for typical building shown in fig. 7.8	246
Table 7.1b	Reinforcement of columns for typical building shown in fig. 7.8	246
Table 7.2a	Effect of variation of columns and beams (dimension & Rft.)	
	on the frame period (3 stories)	251
Table 7.2b	Effect of variation of columns and beams (dimension & Rft.)	
	on the frame period (6 stories)	252

Table 7.2c	Effect of variation of columns and beams (dimension & Rft.)	
	on the frame period (10 stories)	253
Table 7.3	Comparison between the EC-94 and the proposed	
	formula on some existing buildings	267

LIST OF FIGURES

		Page
Fig. 2.1	Frame and shear wall configuration	7
Fig. 2.2	The analytical frame-wall model	7
Fig. 2.3	Overall layout of the a) Isolated wall; b) Frame wall model	8
Fig.2.4a	Layout of two story building prototype (model)	
	dimensions (a) elevation (b) plan	15
Fig. 2.4b	Layout of three story building (prototype dimensions)	
	(a) side view (b) elevation (c) plan	15
Fig. 2.5a	Cracking pattern of three- story model after Run Taft 0.35g	16
Fig. 2.5b	Cracking pattern of two- story model after Run Taft 0.75g	16
Fig 2.6	Computed versus measured response, Run Taft 0.35g	
	(a) base shear; (b) third stories displacement	16
Fig. 2.7	Details of half scale model frame	18
Fig. 2.8	Comparison of observed vs. simulated force-deformation response	19
Fig. 2.9	Configuration and reinforcement details for model structure	20
Fig. 2.10a	Computed versus observed peak acceleration response	21
Fig. 2.10b	Computed versus observed peak displacement response	21
Fig. 2.11	Dimension of two story waffle-flat-plate specimen:	
	(a) typical floor plan; (b) typical floor plan; (c) elevation, Frame A	24
Fig. 2.12	Lateral loading history applied to specimen	25
Fig. 2.13	Jacketed column reinforcement details	25
Fig. 2.14	Crack patterns observed at end of testing, first floor, top	26
Fig. 2.15	Crack patterns observed at end of testing, columns,	
	lateral view.	26
Fig. 2.16a	Analogous braced frame	29
Fig. 2.165	Modes of infill failure	29
Fig. 2.17	Idealized structural model for analysis	36
Fig. 2.18	Comparison of experimental and analytical force-deformation	
	Response of model shown in figure 2.17	37
Fig. 3.1	Effect of confinement on the concrete strain	44
Fig. 3.2	Idealizations of primary curve	44

Fig. 3.3	Examples of bending deformations for one inelastic cycle	45
Fig. 3.4	Stages of behavior for a typical inelastic cycle of symmetrically	
	reinforced concrete cantilever beam	45
Fig. 3.5	Stiffness degradation in a reinforced concrete	46
Fig. 3.6	Strength decay under cyclic loading	46
Fig. 3.7	Pinching in load- displacement hysteresis loop due	
	mainly to sliding shear	48
Fig. 3.8	Components of deformation along a cantilever column	48
Fig. 3.9	Typical flexure dominant response	49
Fig. 3.10a	Pinching due to shear	51
Fig. 3.10b	Pinching due to bar slip	51
Fig. 3.11	Effect of column confinement on hysteretic response	54
Fig. 3.12	Crossing diagonal web reinforcement in combination with	
	vertical web steel for hinging regions under high shear	58
Fig. 3.13	Mechanisms of joint shear resistance	58
Fig. 3.14	Typical beam-column test specimen	60
Fig. 3.15	Hysteresis for beam-column joint	60
Fig. 3.16	Load-deflection relationship for wall subjected	
	to load reversals	62
Fig. 3.17	Laterally loaded coupled wall system. (a) Forces	
	on walls at base. (b) Typical distribution of shears in	
	coupling beams over height of structure	64
Fig. 3.18	Diagonally reinforced coupling beam	64
Fig. 3.19	Punching shear reinforcement	66
Fig. 3.20a	Shear stud attached to base plate	66
Fig. 3.20b	Shear studs in place around a columns	66
Fig. 3.21	Shear hoop reinforcement (a) plan view; (b) basic shear hoop;	
	(e) individual stirrup from prefabricated unit	67
Fig. 3.22	Reinforcement arrangement for specimens	68
Fig. 3.23	load deflection curves for all tested specimens in Ref.70	70
Fig 3.24	Stable and easy to handle prefabricated stirrup unit	70
Fig. 4.1	Source of earthquake	74
Fig. 4.2	Types of waves from earthquake	74
Fig. 4.3	Schematic Diagram of Earthquake waves and definitions	75