Salwa Akl

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

-Call +600-2

Salwa Akl

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Salwa Akl

بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

EFEECT OF FEEDING CORN STOVER TREATED WITH AMMONIA AND UREA ON SHEEP

318496 PERFORMANCE.

Khamis Ibrahim Mohamed

B.Sc. of Agric. Sciences 1983, Minia University. M. Sc. of Agric. Sciences (Animal production) 1989, Minia University.

Thesis

Submitted in partial fulfillment of the requirements for the Degree of Philosophy Doctor

ln

Animal Nutrition

Animal and poultry production Department, Faculty of Agriculture, Assiut University.

1998

Under Supervision of

Dr. G. A. Abd El-Hafiz Dr. S.M. Mousa Prof. of Animal nutrition Assign University

Associate Prof. of Animal Nutrition Assint University

Dr. I. A. Gomaa Prof. of Animal Nutrition APRI.

APPROVAL SHEET

Effect of Feeding corn stover treated with ammonia and urea on sheep performance.

Ву

Khamis Ibrahim Mohamed

Approved by:

Prof. Dr.	U. D. asher
Prof. Dr.	Telledauf
Prof. Dr.	Abd Slitaliz
Dr	5 Maasa

Date: /9/1998

لِنْهِ لِلْهِ الْحِيْدِ

العلم لنا إلا ما علمتنا إنك أنث العليم الحكيم

صدق الله العظيم

Acknowledgements

The author wishes to express his gratitude to Prof. Dr. G. A. Abd El-Hafiz, Prof. of Animal Nutrition and Dr. S.M. Mousa, Associate Prof. of Animal Nutrition, Animal production Department, Faculty of Agriculture, Assiut University for their kind supervision, help, encouragement and personal interest in the subject matter of this manuscript, without this valuable help and keen supervision, such work would have not been completed.

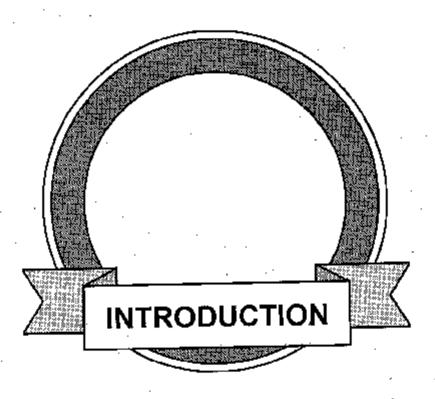
Deep gratitude is expressed to Prof. Dr. I. A. Gomaa, Prof. of Animal Nutrition and deputy director of Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, for his supervision and continuous advice throughout this investigation.

Thanks are due to Dr. T. A. Deraz for kind help during the practical work. My sincere thanks for all the staff members of Sids Research Station, Animal Production Research Institute, Ministry of Agriculture. Sincere thanks are also to my mother and beloved wife for encouragements all the time.

Contents

Subjects	Page
Introduction	1
Review of literature	3
1. Available Roughages In Egypt	3
2. Com Stover as ruminants feedstuffs	3
3. Chemical composition, digestibility and nutritive value of com stover	5
4. Improving the feeding value of roughages	5
4.1. Physical treatment	8
4.2. Chemical treatment	8
4.2.1. Ammonia treatment and its effect on :-	9
1. Crude protein content	9
2. Crude fiber content	10
3. Cell wall constituent (CWC)	11
4. Nutrients digestibility and feeding value	12
5. Animal performance	13
5.1. Feed intake	13
5.2. Growth rate	13
5.3. Feed conversion ratio	14
5.4. Rumen liquor parameters	15
5.5. Blood parameters	15
4.2.2. Urea addition during the ensiling preparation and its effect on:-	16
1. Silage quality	17
2. Crude protein content	18
3.Crude fiber content	18
4. Cell wall constituent (CWC)	19

	5. Nutrients digestibility and feeding value	19	i
	6. Animal performance:-	20	
	6.1. Feed intake	20	
	6.2. Growth rate	21	
	6.3. Feed conversion ratio	22	
	6.4. Puberty's properties	23	
	6.5. Semen physical properties	23	
·	6.6. Rumen liquor	24	
	6.7. Blood parameters	26	
I	Material and Methods	28	
1. Preparation of corn stover		28	ļ
	1.1. Ensiling procedure	28	
	1.2. Anhydrous ammonia treatment	29	ا
2. Feed evaluation		30	
	2.1. Digestibility trials	30	
	2.1.1. Experimental animals	30	
	2.1.2. Experimental feedstuffs	31	
	2.1.3. Samples	31	
ļ	2.2. Feeding trial	32	
	2.2.1. Experimental animals	32	
	2.2.2. Silage quality	32	
ĺ	2.2.3. Experimental rations	33	
	2.2.4. Puberty	34	
	2.2.5. Physical semen characteristics	34	
j	2.2.6. Rumen liquor parameters	35	
İ	2.2.7. Blood samples	35	
	2.3. Chemical analysis	36	
	2.3.1. Proximate analysis	37	


2.3.2. Cell wall constituent (CWC)	36
2.3.3. Silage and rumen liquor parameters	36
2.3.4. Blood plasma constituents	36
Statistical analysis	37
Results and discussion	39
1. Silage quality	39
1.1. Silage pH	39
2. Silage lactic acid concentration	39
3. Silage NH ₃ - N concentration	41
4. Silage total VFA's concentration	41
5. Silage VFA's fraction concentration	42
2. Chemical composition	43
3. Digestibility trials	51
3.1. Feed intake	51
3.2. Nutrient digestibility	53
3.3. Feeding value	57
4. Feeding trial	61
4.1. Daily feed intake	61
4.2. Body weight gain	65
4.3. Feed conversion ratio	69
4.4. Puberty's properties	71
4.5. Semen physical properties	74
4.5.1. Volume	76
4.5.2. Motility	76
4.5.3. pH	77
4.5.4. Dead spermatozoa	77
4.5. 5. Abnormal spermatozoa	77

4.5.6. Sperm concentration per mm ³	78
4.5.7. Sperm concentration per ejaculate	78
4.6. Rumen liquor characteristics :-	79
4.6.1. Ruminal pH values	79
4.6.2. Ruminal NH ₃ -N concentration	81
4.6.3. Rumania total volatile fatty acids (total VFA's)	82
4.6.4. Molar proportions of individual VFA's and Acetic : propionic ratio	83
4.6.4.1. Acetic acid	83
4.6.4.2. Propionic acid	85
4.6.4.3. Butyric acid	85
4.6.4.4. Valeric acid	86
4.6.4.5. Acetic : propionic acid ratio as percentage	86
4.7. Blood plasma constituents	87
General discussion	92
Summary	
Reference:	
Appendices	
Arabic Summary	-

.

.

.

INTRODUCTION

In Egypt, where poverty and high birth rate seem to go hand by hand, in addition, these is a persisting shortage in animal production to cover the ever-increasing demand of growing population. This necessitates a corresponding increase of animal products to provide adequate quantities of animal proteins. On of the main problem facing animal production in Egypt is the shortage of feedstuffs. At present, using the agriculture by - product as a ruminant feed, is the goal of most undertaken researches.

More than seventeen million tons of plant by-products such as rice straw, wheat straw, corn stover and cobs, cotton stalks and sugar cane tops and bagasse are produced annually in Egypt (Agriculture Economics and Statistics Institute, Ministry of Agriculture, Egypt, 1995). Utilization of these by-products is limited because of their low protein content, low palatability and low digestibility, as well as high fiber content (Church, 1980). Therefore, to increase the feed intake and feeding values of agricultural by-products, several methods are used such as mechanical, biological and chemical methods (Jackson, 1978; Kaufman et al. 1987 and Matter, 1989). Among all these methods, the chemical method is the most important one. Anhydrous ammonia treatment and urea supplementation at ensiling are the most common chemical used to improve the feeding value of roughage (Baker et al. 1975; Jackson, 1978; Abd El-Aziz, 1986; Mohamed, 1988; Talha, 1990 and Tabana, 1994). .