

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

TORSIONAL BEHAVIOUR OF IRREGULAR STRUCTURES DURING EARTHQUAKES

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in structural engineering

By

HUSSEIN KHALED ABD-ELAZEZ HUSSEIN

Faculty of Engineering, Ain shams university, 2014

Supervised By

Pro. Dr. GAMAL HUSSEIN MAHMOUD

Professor of Structural Analysis and Mechanics
Structural Engineering Department
Ain Shams University

Dr. NASR EID NASR

Associate professor of Structural Analysis and Mechanics
Structural Engineering Department
Ain Shams University

TORSIONAL BEHAVIOUR OF IRREGULAR STRUCTURES DURING EARTHQUAKES

Degree of Master of Science in structural engineering

(Structural Department)

By

HUSSEIN KHALED ABD-ELAZEZ HUSSEIN

Faculty of Engineering, Ain Shams University, 2014

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Hala Mohamed Gamal, National Research Center	
Prof. Dr. Mohamed Nour El-Den Saad, Ain shams university	
Prof. Dr. Gamal Hussein Mahmoud, Ain shams university	

Date: March 2020

FACULTY OF ENGINEERING

Department of Structural Department

Name: HUSSEIN KHALED ABD-ELAZEZ HUSSEIN

Thesis: Torsional Behavior of Irregular Structures during Earthquakes

Degree: Master of Science in Civil engineering (Structural)

Supervisors Committee

Name and Affiliation	Signature	
Pro. Dr. Gamal Hussein Mahmoud		
Professor of Structural Analysis and Mechanics, Str Engineering Department, Ain shams university	uctural	
Dr. Nasr Eid Nasr		
Assistant Professor of Structural Analysis and Med Structural Engineering Department, Ain shams unit		
Postgraduate studies Authorization stamp: The thesis is authorized at/		
College Board approval	University Board approval	
/	//	

STATEMENT

This thesis is submitted in partial fulfilment of the requirements for the degree of Master of Science in Structural Engineering, Faculty of Engineering "Ain Shams University".

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a requirement at any other scientific entity.

Student Name

Hussein khaled Abd-El Azez Hussein

Signature

.....

Date: March 2020

Researcher Data

Name : Hussein Khaled Abd-El.Azez

Date of birth : 13/12/1991

Place of birth : Cairo

Last academic degree : B.Sc. (Civil department), Faculty of

Engineering, Ain Shams University, Cairo,

Egypt, June 2014

Field of specialization : Structural Engineer

University issued the degree : Ain shams university

Current job : Structure Engineer at Petrojet Company.

ACKNOWLEDGEMENT

I like to say that no words can express my gratitude, love and appreciation to my mother, my father, my brothers and my wife whose help and encouragement were the main motive for me to complete this work. Thank you for supporting me throughout my entire life, words fail to explain how grateful I am for having you as my family.

I would like to present my gratefulness to my supervisors, Dr. Gamal Hussein and Dr. Nasr Eid. Thank you for your guidance, support and assistance throughout this research, I am indebted to all of you with the knowledge and experience I gained. It was an honor working under your supervision.

My greatest appreciation goes to all my instructors and colleagues at the Faculty of Engineering, Ain Shams University. Each and every one of you participated in the achievement I made, by teaching, supporting and encouraging me throughout different stages. Thank you.

May 2020

Table of Contents

Statement	3
Acknowledgment.	5
List of Figures	8
List of Tables.	14
List of Notations and Symbols	16
Abstract	17
Chapter 1: Introduction	19
1.1 Background	19
1.2 Aims & Objectives	20
1.3 Methodology of work	21
1.4 Thesis organization	22
Chapter 2: Literature-Review	23
2.1 Brief overview	23
2.2 General Background	23
2.3 Causes of torsional buildings	24
2.4 Analysis Method studies	26
2.5 Elastic torsional response studies	38
2.6 In-Elastic torsional response studies	53
2.7 Experimental Studies	67
Chapter 3: Verification Study	73
3.1 General	73
3.2 Verification Model	73
3.3 Verification Results & conclusion	81
Chapter 4: Irregularity in seismic codes provisions	86
4.1 Introduction	86
4.2 Objectives.	86
4.3 Valid Comparison of codes	87

4.4 Brief summary of Codes provisions	87
4.5 Methodology.	100
Chapter 5: Parametric Study on Torsion irregularity	115
5.1 General.	115
5.2 Modeling data	115
5.3 Elastic Behavior investigation	122
5.4 In-Elastic Behavior investigation.	148
Chapter 6: Conclusion & Recommendation	211
References	214

LIST OF FIGURES

page

Fig.1-1 Damage to Reentrant corner and upper stories of the Ministry of Telecommunications Building in Mexico City after the 1985 earthquake.	19
Fig.1-2 Some Types of Irregularity	20
Fig.2-1 Histogram of time distribution of publications on building torsion	23
Fig.2-2 Center of mass (CM) & center of rigidity (CR) about Y axis	25
Fig. 2-3. Frames considered in this study: (a) Regular, (b) Mass Irregularity, (c) Vertical geometric irregularity, and (d) difference in floor levels	28
Fig. 2-4. Pseudo-acceleration spectra of scaled ground motions, damping ratio=5%	29
Fig. 2-5. Comparison of the peak story displacements of the reference regular frame computed by MPA and NLTHA procedures	31
Fig. 2-6. Comparison of the peak story displacements of the mass irregular models computed by MPA and NLTHA procedures	32
Fig. 2-7. Comparison of the peak story displacements of the geometrically irregular models computed by MPA and NLTHA procedures	33
Fig. 2-8. Comparison of the peak story displacements of the floor-levels irregular models computed by MPA and NLTHA procedures	33
Fig. 2-9. Comparison of the story-drift ratios of the reference regular frame computed by MPA and NLTHA procedures	34
Fig. 2-10. Comparison of the story-drift ratios of the mass irregular frames computed by MPA and NLTHA procedures	35
Fig. 2-11. Comparison of the story-drift ratios of the geometrically irregular frames Computed by MPA and NLTHA procedures	36
Fig. 2-12. Comparison of the story-drift ratios of the floor-levels irregular frames computed by MPA and NLTHA procedures	36
Fig.2-13 Concentration stresses at re-entrant corner in	39
L-shaped buildings	37
Fig.2-14 Reference regular model "RM" and irregular	40
L-shaped models	70
Fig. 2-15. Story Drift Ratio responses for different models	42

Fig. 2-16. Effect of lateral torsional vibration coupling in the Story displacement for L-shaped models	43
Fig. 2-17. Torsional. Irregularity Ratio for different models.	45
Fig. 2-18. Diaphragm Torsional rotation response	45
Fig. 2-19. Graphic of torsional irregularity in GB50011-2001 and UBC97	46
Fig. 2-20. Seismic effect coefficient curve	47
Fig. 2-21. Plan layout of Str.31	48
Figure 2-22. Variations of θ with exr / (er)	51
Figure 2-23. Variations of θ with exr / (er) (continuous)	52
Figure 2-24. Buildings with different plan aspect ratio	54
Figure 2-25. Comparison of base force versus displacement in X & Y-directions.	55
Figure 2-26. Comparison of base force in X & Y directions.	55
Figure 2-27. Pushover capacity curve and performance point (X-Dir).	56
Figure 2-28. Pushover capacity curve and performance point (Y-Dir).	57
Figure 2-29. (Case 1 & Case 2) yielding pattern of the structure at the Performance point (X-dir).	58
Figure 2-30. (Case 3 & Case 4) yielding pattern of the structure at the Performance point (X-dir).	58
Figure 2-31. (Case 1 & Case 2) yielding pattern of the structure at the Performance point (Y-dir).	58
Figure 2-32. (Case 3 & Case 4) yielding pattern of the structure at the Performance point (Y-dir).	59
Figure 2-33. Number of plastic hinges from A to B.	59
Figure 2-34. Number of plastic hinges from B to IO.	59
Figure 2-35. Number of plastic hinges from in X & Y directions.	60
Figure 2-36. Plan and 3D view of analyzed models	61
Figure 2-37. Maximum story displacement along X and Y direction	63
Figure 2-38. Maximum story displacement along X and Y direction	64
Figure 2-39. Base shear of all the models	64
Figure 2-40. Time period of all the models	65